-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathrun_tf_basic_rnn_static.py
109 lines (65 loc) · 2.58 KB
/
run_tf_basic_rnn_static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#-*- coding: utf-8 -*-
#! /usr/bin/env python
'''
filename: run_tf_basic_static.py
This script is for implementation of a basic rnn network
using tf.nn.rnn_cell.BasicRNNCell(),tf.contrib.rnn.static_rnn()
author: Jaewook Kang @ 2018 Sep
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import numpy as np
import tensorflow as tf
model_config = \
{
'batch_size': None,
'n_input' : 3,
'n_output' : 5,
'num_steps' : 2,
'dtype' : tf.float32
}
def get_rnn_static_model(X,scope):
with tf.name_scope(name=scope,values=[X]):
X_seqs = tf.unstack(tf.transpose(X,perm=[1,0,2]))
basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=model_config['n_output'],
name='basic_rnn_cell')
output_seqs, states = tf.contrib.rnn.static_rnn(cell=basic_cell,
inputs=X_seqs,
dtype=model_config['dtype'])
pred_y = tf.transpose(tf.stack(output_seqs),perm=[1,0,2])
return pred_y
if __name__ == '__main__':
input_shape = [model_config['batch_size'],
model_config['num_steps'],
model_config['n_input']]
output_shape = [model_config['batch_size'],
model_config['num_steps'],
model_config['n_output']]
X = tf.placeholder(dtype = model_config['dtype'],
shape = input_shape,
name = 'X')
scope = 'basic_rnn_static_model'
pred_y = get_rnn_static_model(X,scope)
# tensorboard summary
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = 'tf_logs/rnn_basic_static'
subdir = "{}/run-{}/".format(root_logdir, now)
logdir = './pb_and_ckpt/' + subdir
if not tf.gfile.Exists(logdir):
tf.gfile.MakeDirs(logdir)
summary_writer = tf.summary.FileWriter(logdir=logdir)
summary_writer.add_graph(graph=tf.get_default_graph())
init = tf.global_variables_initializer()
X_batch = np.array( [
[[0,1,2],[9,8,7]],
[[3,4,5],[6,5,4]],
[[6,7,8],[3,2,1]],
[[9,0,1],[0,0,0]]
])
with tf.Session() as sess:
sess.run(init)
Y_val = sess.run(fetches=[pred_y],feed_dict={X:X_batch})
print('Y_val = %s' % Y_val)
summary_writer.close()