-
Notifications
You must be signed in to change notification settings - Fork 0
/
ASA WORKING.tex
536 lines (494 loc) · 24.8 KB
/
ASA WORKING.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
\documentclass{beamer}\usetheme[titleformat=allcaps]{metropolis} % Use metropolis theme
\usepackage[T1]{fontenc}
\setbeamerfont{caption}{size=\scriptsize}
\usepackage{caption}
\usepackage{color}
\captionsetup[table]{belowskip=-1pt}
\captionsetup[figure]{belowskip=-8pt, aboveskip=1pt}
\usepackage[sfdefault]{FiraSans}
\usepackage[nomap]{FiraMono}\title{\textmd{Governance, financialization \& institutional fragility:\\public sector pensions in the U.S.}}\date{\today}\author{A. Jason Windawi}\institute{Department of Sociology\\Princeton University}
\begin{document}\maketitle
\begin{frame}{\textmd{Overview}} \begin{enumerate}
\item Motivation
\item Approach
\item Variables and Data
\item Results
\item Next Steps
\end{enumerate}
\end{frame}
\begin{frame}{\textmd{Motivation: Institutional Fragility}}
Public sector pensions are an institutionalized source of socioeconomic stability in the U.S.
\begin{scriptsize}
\begin{itemize}
\item Result of 20th Century settlement between labor and capital (Dobbin 1992, Dobbin \& Boychuk 1996, Skocpol 1992), now support millions of households
\item Demographic pressures make retirement income increasingly important
\end{itemize}
\end{scriptsize}
They are also central to the financialization of the U.S. economy
\begin{scriptsize}
\begin{itemize}
\item 1974 passage of ERISA laid groundwork for vast investments in capital markets
\item \$3.3 trillion in assets (US Census 2014)
\end{itemize}
\end{scriptsize}
Yet they are also increasingly a source of political instabilities
\begin{scriptsize}
\begin{itemize}
\item Funding gaps are becoming a political problem at the state and local levels (e.g. Illinois, Detroit)
\end{itemize}
\end{scriptsize}
\end{frame}
\begin{frame}{\textmd{Motivation: Institutional Fragility}}
\begin{small}
Public pensions began the century in general good health...
\end{small}
\begin{figure}
\caption*{\textbf{Density of Funding Gaps, 2001}}
\includegraphics[width=\textwidth]{fundinggap01}
\end{figure}
\end{frame}
\begin{frame}{\textmd{Motivation: Institutional Fragility}}
\begin{small}
...but their fiscal health has deteriorated since then
\end{small}
\begin{figure}
\caption*{\textbf{Density of Funding Gaps, 2001-2013}}
\includegraphics[width=\textwidth]{fundinggap}
\end{figure}
\end{frame}
\begin{frame}{\textmd{Motivation: Financialization and Governance}}
Studying public pensions can extend sociological insights into financialization
\begin{scriptsize}
\begin{itemize}
\item Established work focuses largely on processes operating at the state (Krippner 2005, 2011) and/or field levels (Davis 2009, Fligstein 2001), with an emphasis on profit-driven firms
\item Leaves unexamined the use of financial markets as a source of accumulation (Krippner 2005, 2011) for the state itself
\end{itemize}
\end{scriptsize}
Public pensions introduce several new dimensions of governance, at the intersection of political, organizational, economic and fiscal sociology
\begin{scriptsize}
\begin{itemize}
\item Using markets to reconcile conflicting "contracts" with citizens/taxpayers (Martin 2012) and employees creates a complex and contradictory institutional environment (Scott and Meyer 1991)
\end{itemize}
\end{scriptsize}
\end{frame}
\begin{frame}{\textmd{Motivating Governance: Heterogeneous Trajectories}}
\begin{small}
Variability in outcomes suggests variability in governance
\end{small}
\begin{figure}
\caption*{\textbf{Quartiles of Funding Status, by Year}}
\includegraphics[width=\textwidth]{riverall}
\end{figure}
\end{frame}
\begin{frame}{\textmd{Motivating Governance: Heterogeneous Trajectories}}
\begin{small}
Quartile membership changes significantly over time...
\end{small}
\begin{figure}
\caption*{\textbf{Quartiles of Funding Status, by Year}}
\includegraphics[width=\textwidth]{riverstart}
\end{figure}
\end{frame}
\begin{frame}{\textmd{Motivating Governance: Heterogeneous Trajectories}}
\begin{small}
...creating time-dependent outcomes
\end{small}
\begin{figure}
\caption*{\textbf{Quartiles of Funding Status, by Year}}
\includegraphics[width=\textwidth]{riverfinish}
\end{figure}
\end{frame}
\begin{frame}{\textmd{Questions and Approach}}
Why is this important institution faring so poorly? What are the sources of heterogeneity in outcomes? \\
\bigskip
\underline{Model 1: Estimating Funding Gap}
\begin{scriptsize}
\begin{itemize}
\item Use 2001 to 2013 panel data in random effects prediction of Funding Gap per capita (linking pension health to political risk) based on various governance, investment, fiscal and other variables
\end{itemize}
\end{scriptsize}
\underline{Model 2: Estimating Funding Gap, with Volatility}
\begin{scriptsize}
\begin{itemize}
\item Use 2013 data only for OLS estimate of Funding Gap per capita, incorporating investment volatility
\end{itemize}
\end{scriptsize}
\underline{Model 3: Estimating Financialization}
\begin{scriptsize}
\begin{itemize}
\item Use 2001 to 2013 panel data in random effects prediction of Financialization based on various governance, investment, fiscal and other variables
\end{itemize}
\end{scriptsize}
\end{frame}
\begin{frame}{\textmd{Variables and Data}}
\begin{table}
\begin{tiny}
\begin{center}
\caption*{\textbf{Variables and Data Sources}}
\begin{tabular}{l c l l}
\hline
\textbf{Variable} & Hypothesized & Definition & Source \\
\hline
\textbf{Funding Gap} & & (Assets-Liabilities)/Popn & CRR, US Census\\ [0.3ex]
\textbf{Financialization} & $-$ & Investment Income/Contributions & CRR \\ [0.3ex]
\textbf{Volatility} & $+$ & SD of 1-yr Returns & CRR \\[0.3ex]
\textbf{Performance Gap} & $+$ & Expected Rtn - 5yr Rtn & CRR \\[0.3ex]
\textbf{\% of Req Contribution} & $-$ & Empl. Contribution/Actuarial Rec. & CRR\\[0.3ex]
\textbf{Benefit Generosity} & $+$ & Avge Benefit/Median Income & CRR, US Census \\[0.3ex]
\textbf{Public Debt} & $+$ & Public Debt/Popn & US Census \\ [0.3ex]
\textbf{Interest Cost} & $+$ & Public Interest/General Revenues & US Census \\[0.3ex]
\textbf{Plan Demographics} & $-$ & Workers/Beneficiaries & CRR \\[0.3ex]
\hline
\multicolumn{4}{l}{CRR is the Center for Retirement Research at Boston College}\\
\multicolumn{4}{l}{US Census is the Annual Census of Local and State Governments}\\
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Results 1: Per Capita Funding Gap}}
\begin{table}
\begin{tiny}
\begin{center}
\caption*{\textbf{Predicting Funding Gap Per Capita}\\\tiny{Random Effects Panel Models with Arellano-Robust Errors} \\ Full Sample and Thirds by 2013 Funded Status}
\begin{tabular}{l c c c c }
\hline
& \textbf{Full Sample} & Best Third & Middle Third & Worst Third \\
\hline
\textbf{Financialization} & $\mathbf{-11.111^{**}}$ & $-4.814^{*}$ & $-13.504^{**}$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)}& $(3.619)$ & & & \\ [0.4ex]
\textbf{Performance Gap} & $\mathbf{35.418^{***}}$ & $9.737^{**}$ & $33.563^{***}$ & $62.366^{***}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(459.026)$ & & & \\[0.4ex]
\textbf{\% Contributed of Req.} & $-18.930$ & $-152.426^{***}$ & $-93.859^{*}$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & $(53.246)$ & & & \\[0.4ex]
\textbf{Benefit Generosity} & $\mathbf{1308.740^{**}}$ & $474.044^{*}$ & $1256.074^{***}$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & $(450.344)$ & & & \\[0.4ex]
\textbf{Interest Cost} & $\mathbf{-5.444^{**}}$ & \color{gray}$Null$ & $-40.317^{***}$ & \color{gray}$Null$ \\
& $(203.256)$ & & & \\[0.4ex]
\textbf{Interest Cost} & $\mathbf{-3.726^{*}}$ & $-1.357^{*}$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & $(145.162)$ & & & \\[0.4ex]
\textbf{Public Debt} & $\mathbf{494.477^{***}}$ & \color{gray}$Null$ & $155.152^{*}$ & $910.518^{**}$ \\
\hspace*{0.25cm} \emph{(lag)} & $(136.345)$ & & & \\[0.4ex]
\textbf{Demographics} & $-129.964$ & \color{gray}$Null$ & $-277.719^{***}$ & $-633.106^{**}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(85.915)$ & & & \\[0.2ex]
\hline
N & 1320 & 431 & 454 & 433 \\
R$^2$ & 0.216 & 0.153 & 0.276 & 0.287 \\
Adj. R$^2$ & 0.211 & 0.136 & 0.263 & 0.273 \\
\hline
\multicolumn{5}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^*p<0.05$}\\
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Results 2: 2013 Only}}
\begin{figure}
\caption*{\textbf{Estimating Funding Gap Per Capita}\\ \tiny{OLS Models with Influentials, Outliers Removed\\2013 Data Only}}
\includegraphics[width=\textwidth]{ols2}
\end{figure}
\end{frame}
\begin{frame}{\textmd{Results 3: Financialization}}
\vspace*{-1.5mm}
\begin{table}
\begin{tiny}
\caption*{\textbf{Predicting Financialization}\\\tiny{Random Effects Panel Models with Arellano-Robust Errors} \\ Full Sample and Thirds by 2013 Funded Status}
\begin{center}
\begin{tabular}{l c c c c }
\hline
& \textbf{Full Sample} & Best Third & Middle Third & Worst Third \\
\hline
\textbf{Funding Gap} & $\mathbf{-0.0003^{**}}$ & $-0.0006^{*}$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & $(0.0001)$ & & & \\ [0.4ex]
\textbf{Performance Gap} & $-0.6566$ & \color{gray}$Null$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)}& $(2.6004)$ & & & \\[0.4ex]
\textbf{Benefit Generosity} & $1.0189$ & $2.4355^{*}$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)}& $(0.5593)$ & & & \\[0.4ex]
\textbf{Interest Cost} & $0.0067$ & \color{gray}$Null$ & \color{gray}$Null$ & \color{gray}$Null$ \\
& $(0.2077)$ & & & \\[0.4ex]
\textbf{Interest Cost} & $-0.0176$ & \color{gray}$Null$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & $(0.2096)$ & & & \\[0.4ex]
\textbf{Public Debt} & $\mathbf{0.2777^{***}}$ & \color{gray}$Null$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & $(0.0800)$ & & & \\[0.4ex]
\textbf{1-yr Return} & $\mathbf{0.265^{***}}$ & $0.273^{***}$ & $0.278^{***}$ & $0.246^{***}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(1.7834)$ & & & \\[0.4ex]
\textbf{Demographics} & $\mathbf{0.2521^{**}}$ & $0.3470^{***}$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)}& $(0.0838)$ & & & \\[0.4ex]
\textbf{Investment Risk} & $-0.0644$ & \color{gray}$Null$ & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)}& $(0.8040)$ & & & \\[0.4ex]
\hline
N & 1311 & 427 & 453 & 430 \\
R$^2$ & 0.610 & 0.622 & 0.644 & 0.572 \\
Adj. R$^2$ & 0.607 & 0.614 & 0.637 & 0.562 \\
\hline
\multicolumn{5}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^*p<0.05$}
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Summarizing Results}}
\begin{table}
\begin{tiny}
\begin{center}
\caption*{Summarizing Main Effects}
\begin{tabular}{l c c c}
\hline
& DV$=$Funding Gap & DV$=$2013 Funding Gap & DV$=$Financialization \\
& RE Panel & OLS & RE Panel \\
\hline
\textbf{Financialization} & \scriptsize{\color{red}\textbf{$-**$}} & \scriptsize{\color{red}\textbf{$-**$}}\\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Funding Gap} & & & \scriptsize{\color{red}\textbf{$-**$}} \\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Performance Gap} & \scriptsize{\color{teal}\textbf{$+***$}} & \color{gray}$Null$ & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Benefit Generosity} & \scriptsize{\color{teal}\textbf{$+**$}} & \scriptsize{\color{teal}\textbf{$+***$}} & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Interest Cost} & \scriptsize{\color{red}\textbf{$-**$}} & \scriptsize{\color{red}\textbf{$-**$}} & \color{gray}$Null$ \\
& & \\[0.4ex]
\textbf{Interest Cost} & \scriptsize{\color{red}\textbf{$-*$}} & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Public Debt} & \scriptsize{\color{teal}\textbf{$+***$}} & \scriptsize{\color{teal}\textbf{$+***$}} & \scriptsize{\color{teal}\textbf{$+***$}} \\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Demographics} & \color{gray}$Null$ & \color{gray}$Null$ & \scriptsize{\color{teal}\textbf{$+**$}} \\
\hspace*{0.25cm} \emph{(lag)}& & \\[0.4ex]
\textbf{1-yr Return} & & & \scriptsize{\color{teal}\textbf{$+***$}} \\
\hspace*{0.25cm} \emph{(lag)} & & \\[0.4ex]
\textbf{Investment Risk} & & & \color{gray}$Null$ \\
\hspace*{0.25cm} \emph{(lag)}& & \\[0.2ex]
\hline
N & 1320 & 87 & 1311 \\
\hline
\multicolumn{3}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^*p<0.05$}
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Preliminary Conclusions}}
\begin{itemize}
\item Financialization is double-edged sword, with \emph{returns} reducing funding gaps but \emph{volatility} increasing them
\item The benefits also appear to be limited to funds with stronger investment performance
\item Public debt and generous benefits strongly predict both pension underfunding and greater financialization
\item Variation by end-point outcomes implies a role for governance to be explored further
\end{itemize}
\end{frame}
\begin{frame}{\textmd{Next Steps: Refining Data and Analysis}}
\begin{itemize}
\item Investigate interest cost negative effect
\item Expand data set to include fiscal 2014 and 2015
\item Include broader set of pensions by using multilevel/mixed models
\item Examine heterogeneity by using mixed model quantile regression
\item Perhaps model other aspects of decision-making and financialization
\end{itemize}
\end{frame}
\begin{frame}
\textmd{Thank you!}
\end{frame}
\begin{frame}
\textmd{APPENDIX}
\end{frame}
\begin{frame}{\textmd{Descriptives}}
\begin{table}
\begin{tiny}
\caption{Descriptive Statistics: Full CRR Sample, 2001 - 2013}
\begin{center}
\begin{tabular}{@{\extracolsep{5pt}}lccccc}
\hline
Variable & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Max} \\
\hline
Funding Gap (pc) & 1,382 & 900 & 1107 & $-$3,106 & 7,393 \\
\hspace*{0.25cm} \emph{Actuarial Assets} & & 20,870,736 & 32,071,286 & 190,116.7 & 282,991,008 \\
\hspace*{0.25cm} \emph{Actuarial Liabilities} & & 25,377,734 & 37,286,229 & 254,255 & 375,019,000 \\
\hspace*{0.25cm} \emph{UAAL (Gap)} & & 4,499,323 & 8,423,337 & $-$17,705,000 & 93,091,000 \\
Financialization & 1,383 & 1.668 & 4.162 & $-$47.589 & 28.576 \\
\% Contribution & 1,384 & 0.946 & 0.386 & 0.000 & 8.307 \\
Generosity & 1,391 & 0.446 & 0.179 & 0.000 & 1.091 \\
\hspace*{0.25cm} \emph{Avge. Benefit} & & 21,608 & 9,256 & 1,126 & 62,040 \\
\hspace*{0.25cm} \emph{Local HH Income} & & 47,941 & 7,139 & 29,359 & 71,836 \\
Performance Gap & 1,343 & 0.024 & 0.036 & $-$0.177 & 0.097 \\
\hspace*{0.25cm} \emph{Discount/Expectation} & & 0.079 & 0.004 & 0.055 & 0.090 \\
\hspace*{0.25cm} \emph{5-yr Return} & & 0.055 & 0.036 & $-$0.015 & 0.257 \\
Ideology & 1,391 & 0.101 & 0.808 & $-$1.479 & 1.431 \\
Public Debt (pc) & 1,391 & 5,910 & 3,166 & 49 & 17,588 \\
Public Interest Cost & 1,391 & 0.053 & 0.035 & 0.005 & 0.317 \\
\hspace*{0.25cm} \emph{Interest Payments} & & 1,973,690 & 2,963,891 & 6,850 & 19,391,998 \\
\hspace*{0.25cm} \emph{Public Revenue} & & 40,052,895 & 54,663,962 & 305,352 & 345,681,364 \\
Active Risk & 1,376 & 0.628 & 0.082 & 0.121 & 0.970 \\
\hspace*{0.25cm} \emph{Equity Allocation} & & 0.545 & 0.111 & 0.000 & 0.780 \\
\hspace*{0.25cm} \emph{Alternatives Allocation} & & 0.079 & 0.088 & 0.000 & 0.566 \\
Demographics & 1,383 & 1.919 & 0.972 & 0.016 & 14.906 \\
\hline
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Funding Quantiles, per capita}}
\includegraphics[width=\textwidth]{gapquants}
\end{frame}
\begin{frame}{\textmd{Predicting Per Capita Funding Gap}}
\begin{table}
\begin{tiny}
\begin{center}
\caption{Random Effects Panel Models with Arellano-Robust Errors \\ Full Sample and Thirds by 2013 Funded Status}
\begin{tabular}{l c c c c }
\hline
& Full Sample & Best Third & Middle Third & Worst Third \\
\hline
Financialization & $-11.111^{**}$ & $-4.814^{*}$ & $-13.504^{**}$ & $-9.348$ \\
\hspace*{0.25cm} \emph{(lag)}& $(3.619)$ & $(2.219)$ & $(4.792)$ & $(9.166)$ \\ [0.4ex]
Performance Gap & $3541.760^{***}$ & $973.731^{**}$ & $3356.341^{***}$ & $6236.624^{***}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(459.026)$ & $(335.146)$ & $(577.574)$ & $(1021.305)$ \\[0.4ex]
\% Contributed of Req. & $-18.930$ & $-152.426^{***}$ & $-93.859^{*}$ & $233.114$ \\
\hspace*{0.25cm} \emph{(lag)} & $(53.246)$ & $(38.889)$ & $(44.752)$ & $(164.571)$ \\[0.4ex]
Benefit Generosity & $1308.740^{**}$ & $474.044^{*}$ & $1256.074^{***}$ & $613.063$ \\
\hspace*{0.25cm} \emph{(lag)} & $(450.344)$ & $(220.669)$ & $(301.170)$ & $(1134.765)$ \\[0.4ex]
Interest Cost & $-544.409^{**}$ & $-108.698$ & $-403.166^{***}$ & $-574.149$ \\
& $(203.256)$ & $(93.060)$ & $(102.112)$ & $(493.936)$ \\[0.4ex]
Interest Cost & $-372.562^{*}$ & $-135.668^{*}$ & $31.589$ & $-885.997$ \\
\hspace*{0.25cm} \emph{(lag)} & $(145.162)$ & $(61.957)$ & $(113.653)$ & $(592.793)$ \\[0.4ex]
Public Debt & $494.477^{***}$ & $147.156$ & $155.152^{*}$ & $910.518^{**}$ \\
\hspace*{0.25cm} \emph{(lag)} & $(136.345)$ & $(75.687)$ & $(71.599)$ & $(289.461)$ \\[0.4ex]
Demographics & $-129.964$ & $-36.911$ & $-277.719^{***}$ & $-633.106^{**}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(85.915)$ & $(19.865)$ & $(55.476)$ & $(218.863)$ \\[0.2ex]
\hline
N & 1320 & 431 & 454 & 433 \\
R$^2$ & 0.216 & 0.153 & 0.276 & 0.287 \\
Adj. R$^2$ & 0.211 & 0.136 & 0.263 & 0.273 \\
\hline
\multicolumn{5}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^*p<0.05$}\\
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Predicting Financialization}}
\begin{table}
\begin{tiny}
\begin{center}
\caption{Random Effects Panel Models with Arellano-Robust Errors \\ Full Sample and Thirds by 2013 Funded Status}
\begin{tabular}{l c c c c }
\hline
& Full Sample & Best Third & Middle Third & Worst Third \\
\hline
Funding Gap & $-0.0003^{**}$ & $-0.0006^{*}$ & $-0.0002$ & $-0.0003$ \\
\hspace*{0.25cm} \emph{(lag)} & $(0.0001)$ & $(0.0003)$ & $(0.0008)$ & $(0.0001)$ \\ [0.4ex]
Performance Gap & $-0.6566$ & $2.5400$ & $-3.5464$ & $0.4629$ \\
\hspace*{0.25cm} \emph{(lag)}& $(2.6004)$ & $(6.0450)$ & $(6.0039)$ & $(2.1134)$ \\[0.4ex]
Benefit Generosity & $1.0189$ & $2.4355^{*}$ & $-0.6718$ & $0.8006$ \\
\hspace*{0.25cm} \emph{(lag)}& $(0.5593)$ & $(1.0838)$ & $(0.9919)$ & $(0.6572)$ \\[0.4ex]
Interest Cost & $0.0067$ & $-0.4217$ & $0.2663$ & $0.6877$ \\
& $(0.2077)$ & $(0.3725)$ & $(0.2280)$ & $(0.5361)$ \\[0.4ex]
Interest Cost & $-0.0176$ & $0.2546$ & $-0.1958$ & $-0.5946$ \\
\hspace*{0.25cm} \emph{(lag)} & $(0.2096)$ & $(0.2757)$ & $(0.3284)$ & $(0.5579)$ \\[0.4ex]
Public Debt & $0.2777^{***}$ & $0.3619$ & $0.1780^{\odot}$ & $0.2359$ \\
\hspace*{0.25cm} \emph{(lag)} & $(0.0800)$ & $(0.2307)$ & $(0.0942)$ & $(0.2310)$ \\[0.4ex]
1-yr Return & $26.5189^{***}$ & $27.2574^{***}$ & $27.7956^{***}$ & $24.5770^{***}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(1.7834)$ & $(2.3273)$ & $(3.4430)$ & $(3.3566)$ \\[0.4ex]
Demographics & $0.2521^{**}$ & $0.3470^{***}$ & $-0.1123$ & $0.2192$ \\
\hspace*{0.25cm} \emph{(lag)}& $(0.0838)$ & $(0.0750)$ & $(0.2777)$ & $(0.2287)$ \\[0.4ex]
Investment Risk & $-0.0644$ & $0.2563$ & $0.0846$ & $-0.7316$ \\
\hspace*{0.25cm} \emph{(lag)}& $(0.8040)$ & $(1.7075)$ & $(1.7643)$ & $(0.9670)$ \\[0.4ex]
\hline
N & 1311 & 427 & 453 & 430 \\
R$^2$ & 0.610 & 0.622 & 0.644 & 0.572 \\
Adj. R$^2$ & 0.607 & 0.614 & 0.637 & 0.562 \\
\hline
\multicolumn{5}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^*p<0.05$}
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Financialization and Reflexivity}}
\begin{table}
\begin{tiny}
\begin{center}
\caption{Random Effects Panel Models with Arellano-Robust Errors}
\begin{tabular}{l c c}
\hline
& DV$=$Funding Gap & DV$=$Financialization \\
\hline
Financialization & $-11.111^{**}$ & \\
\hspace*{0.25cm} \emph{(lag)} & $(3.619)$ & \\
Funding Gap & & $-0.0003^{**}$ \\
\hspace*{0.25cm} \emph{(lag)} & & $(0.0001)$ \\
Performance Gap & $3541.760^{***}$ & $-0.6566$ \\
\hspace*{0.25cm} \emph{(lag)} & $(459.026)$ & $(2.6004)$ \\
Benefit Generosity & $1308.740^{**}$ & $1.0189$ \\
\hspace*{0.25cm} \emph{(lag)} & $(450.344)$ & $(0.5593)$ \\
Interest Cost & $-544.409^{**}$ & $0.0067$ \\
& $(203.256)$ & $(0.2077)$ \\
Interest Cost & $-372.562^{*}$ & $-0.0176$ \\
\hspace*{0.25cm} \emph{(lag)} & $(145.162)$ & $(0.2096)$ \\
Public Debt & $494.477^{***}$ & $0.2777^{***}$ \\
\hspace*{0.25cm} \emph{(lag)} & $(136.345)$ & $(0.0800)$ \\
Demographics & $-129.964$ & $0.2521^{**}$ \\
\hspace*{0.25cm} \emph{(lag)}& $(85.915)$ & $(0.0838)$ \\
1-yr Return & $NA$ & $26.5189^{***}$ \\
\hspace*{0.25cm} \emph{(lag)} & & $(1.7834)$ \\
Investment Risk & $NA$ & $-0.0644$ \\
\hspace*{0.25cm} \emph{(lag)}& & $(0.8040)$ \\
\hline
N & 1320 & 1311 \\
\hline
\multicolumn{3}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^*p<0.05$}
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Results: OLS}}
\begin{table}
\begin{tiny}
\caption{OLS Regression Using 2013 Data}
\begin{center}
\begin{tabular}{lcc}
\hline
& Original & Less Outliers \\
\hline
(Intercept) & $6.165^{**}$ & $5.468^{**}$ \\
& $(2.098)$ & $(1.863)$ \\
\textbf{Financialization} & $\mathbf{-0.422}^{*}$ & $\mathbf{-0.514}^{**}$ \\
& $(0.204)$ & $(0.178)$ \\
\textbf{Performance Gap} & $0.197$ & $0.088$ \\
& $(0.253)$ & $(0.222)$ \\
\textbf{Volatility} & $\mathbf{1.517}^{*}$ & $\mathbf{1.557}^{**}$ \\
& $(0.635)$ & $(0.570)$ \\
\textbf{Generosity} & $\mathbf{1.556}^{**}$ & $\mathbf{1.895}^{***}$ \\
& $(0.566)$ & $(0.523)$ \\
\textbf{Public Debt} & $\mathbf{0.275}^{*}$ & $\mathbf{0.342}^{**}$ \\
& $(0.116)$ & $(0.101)$ \\
\textbf{Interest Cost} & $\mathbf{-0.416}^{*}$ & $\mathbf{-0.509}^{**}$ \\
& $(0.200)$ & $(0.176)$ \\
\textbf{Demographics} & $0.010$ & $-0.082$ \\
& $(0.180)$ & $(0.333)$ \\
\hline
R$^2$ & 0.207 & 0.298 \\
Adj. R$^2$ & 0.140 & 0.236 \\
Num. obs. & 92 & 87 \\
RMSE & 0.883 & 0.753 \\
\multicolumn{2}{l}{$^{***}p<0.001$, $^{**}p<0.01$, $^{*}p<0.05$} \\
\end{tabular}
\end{center}
\end{tiny}
\end{table}
\end{frame}
\begin{frame}{\textmd{Preliminary Conclusions}}
\begin{itemize}
\item Limited evidence that financialization has driven outcomes
\item Effects of prior promises are a larger driver than basic demographics
\item Endpoint dependence and volatile markets introduce significant potential for disruption
\end{itemize}
\end{frame}
\end{document}