-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathderiv1.rkt
309 lines (262 loc) · 11.4 KB
/
deriv1.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#lang racket
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1)
(variable? v2)
(eq? v1 v2)))
(define (arb-args x)
(if(null? (cdddr x))
(caddr x)
(cons '+ (cons(cddr x)null))))
;(arb-args'(+ x x x))
(define (arb-args-infix x)
(if(null? (cdddr x)); only three arguments a + a
(caddr x)
;else has more than that
(cddr x)))
;(displayln "arb-args-infix")
;(arb-args-infix '(x + y + z))
;PREDICATES
(define (sum? x)
(and (pair? x)(not(null? (cdr x))) (eq? (cadr x) '+)))
;(displayln "sum?")
;(sum? '(3 + x))
(define (exponentiation? x)
(and (pair? x) (eq? (cadr x) '^)))
(define (product? x)
(and (pair? x) (eq? (cadr x) '*)))
;(displayln "product?")
;(product? '(3 * 4))
(define (addend s) (car s))
;(null? (cdddr'(+ a b c)))
(define (augend s)(arb-args-infix s))
;(displayln "augend")
;(augend '(a + b + c))
;(augend '(a + b + c + d))
;check sum in
;we can add numbers directly or convert symbols into (* x 2)
(define (number-or-eq-symbol? exp1 exp2)
(or(and (number? exp1)(number? exp2))
(and (variable? exp1)(eq? exp1 exp2))))
;(displayln "number-or-eq-symbol?")
;(number-or-eq-symbol? 'x 'x)
;(number-or-eq-symbol? 'x 'y)
;(number-or-eq-symbol? 'x 1)
;(number-or-eq-symbol? '2 1)
(define (if-list e)
(if(pair? e) e (list e)))
;(define (make-sum a1 a2)
; (displayln (list "make-sum: " a1 a2))
;
; (define (handle-vars v1 v2)
; (displayln "handle-vars")
; (if(and(variable? v1)(eq? v1 v2))
; (list 2 '* v1)
; (make-sum v1 v2)))
;
; (define (flatten-one-side flat unknown)
; (displayln (list "flatten-one-side" flat unknown))
; (if(sum? unknown)
; (append (list flat '+) unknown)
; (list flat '+ unknown)))
;
; (define (simplify-num/symbol-sum n s)
; (displayln (list "simplify-num-sum" n s))
; (cond((number-or-eq-symbol? n(addend s))(flatten-one-side(augend s)(make-sum n (addend s))))
; (else (flatten-one-side(make-sum n (augend s))(addend s)))))
;
; (define (simplify-sums s1 s2)
; (displayln "simplify-sums")
; (cond((number-or-eq-symbol? (addend s1)(addend s2))(flatten-one-side(handle-vars (addend s1)(addend s2))(handle-vars (augend s1)(augend s2)))); first arg to flatten will either be a number or (x ^ 2)
; ((number-or-eq-symbol?(augend s1)(addend s2))(flatten-one-side(handle-vars (augend s1)(addend s2))(handle-vars (addend s1)(augend s2))))
; ((number-or-eq-symbol?(addend s1)(augend s2))(flatten-one-side(handle-vars (addend s1)(augend s2))(handle-vars (augend s1)(addend s2))))
; ((number-or-eq-symbol? (augend s1)(augend s2))(flatten-one-side(handle-vars (addend s1)(augend s2))(handle-vars (augend s1)(addend s2))))
; (else(append a1 (list '+) a2))))
;
; (cond ((=number? a1 0) a2); take care of zeros
; ((=number? a2 0) a1)
; ((and (number? a1) (number? a2))(+ a1 a2)); if simple nums just add
; ((or(product? a1)(exponentiation? a1))(displayln "a1 is prod or exp")(flatten-one-side a1 a2))
; ((or(product? a2)(exponentiation? a2))(displayln "a2 is prod or exp")(flatten-one-side a2 a1))
; ((and (sum? a1)(sum? a2))(displayln "two sums")(simplify-sums a1 a2))
; ((and (sum? a1)(or(variable? a2)(number? a2)))(displayln "sum and num")(simplify-num/symbol-sum a2 a1))
; ((and (sum? a2)(or(variable? a1)(number? a1)))(displayln "sum and num")(simplify-num/symbol-sum a1 a2))
; (else (displayln "else")(list a1 '+ a2))))
(define (make-operation oper oper? higher-oper)
(lambda (a1 a2)
(define (make-oper a1 a2)
(displayln (list "make-oper: " a1 a2))
(define (handle-vars v1 v2)
(displayln "handle-vars")
(if(and(variable? v1)(eq? v1 v2))
(list 2 higher-oper v1)
(make-oper v1 v2)))
(define (flatten-to-right left right)
(displayln (list "flatten-to-right" left right))
(if(oper? right)
(append (list left oper) right)
(list left oper right)))
(define (flatten-to-left left right)
(displayln (list "flatten-to-left" left right))
(if(oper? right)
(append right (list oper left ))
(list right oper (car left)(cadr left)(caddr left))))
(define (simplify-num/symbol-oper n s)
(displayln (list "simplify-num-oper" n s))
(cond((number-or-eq-symbol? n (addend s))(flatten-to-right(augend s)(handle-vars n (addend s))))
(else (flatten-to-right(addend s)(make-oper n (augend s))))))
(define (simplify-opers s1 s2)
(displayln (list "simplify-opers" s1 s2))
(cond((number-or-eq-symbol? (addend s1)(addend s2))(flatten-to-right(handle-vars (addend s1)(addend s2))(handle-vars (augend s1)(augend s2)))); first arg to flatten will either be a number or (x ^ 2)
((number-or-eq-symbol?(augend s1)(addend s2))(flatten-to-right(handle-vars (augend s1)(addend s2))(handle-vars (addend s1)(augend s2))))
((number-or-eq-symbol?(addend s1)(augend s2))(flatten-to-right(handle-vars (addend s1)(augend s2))(handle-vars (augend s1)(addend s2))))
((number-or-eq-symbol? (augend s1)(augend s2))(flatten-to-right(handle-vars (addend s1)(augend s2))(handle-vars (augend s1)(addend s2))))
(else
(displayln "simplify-opers else")
(append a1 (list oper) a2))))
(cond ((=number? a1 0) a2); take care of zeros
((=number? a2 0) a1)
((and (number? a1) (number? a2))(+ a1 a2)); if simple nums just add
((and (or(product? a1)(exponentiation? a1))(or(product? a2)(exponentiation? a2)))
(displayln "both exp/prod")
(append a1 (list oper) a2))
((or(product? a1)(exponentiation? a1))
(displayln "a1 is prod or exp")
(flatten-to-right a1 a2))
((or(product? a2)(exponentiation? a2))
(displayln "a2 is prod or exp")
(flatten-to-left a2 a1))
((and (oper? a1)(oper? a2))
(displayln "two sums")
(simplify-opers a1 a2))
((and (oper? a1)(or(variable? a2)(number? a2)))
(displayln "sum then single")
(simplify-num/symbol-oper a2 a1))
((and (oper? a2)(or(variable? a1)(number? a1)))
(displayln "single then sum")
(simplify-num/symbol-oper a1 a2))
(else
(displayln "else")
(list a1 oper a2))))
(make-oper a1 a2)))
(displayln "MAKE OPERATION TEST")
((make-operation '+ sum? '*) 5 6)
(define make-sum
(make-operation '+ sum? '*))
(displayln "make-sum test")
(make-sum '(5 + x )'(x + 5))
(make-sum '(5 + x)'(2 + y))
(make-sum '(5 + x)'(2 + x))
(make-sum 'y '(y + 7))
(make-sum '(y + 7)'y)
(make-sum 7 '(x + 7))
(make-sum '(3 + x)'(6 + y))
(make-sum '(x + 5)'(6 + y))
(make-sum'(5 + y)'(7 ^ z))
(make-sum '(x + 6)(make-sum'(5 + y)'(7 ^ z))) ; should become x + 11 + y
(make-sum '(x + 6)'(5 ^ y)) ; should become x + 11 + y
(make-sum '(x + 6)'(5 * y)) ; should become (x + 6 + (5 * y))
(make-sum '(5 * y)'(x + 6)) ; should become (x + 6 + (5 * y))
(make-sum '(5 * y)'(x ^ 6)) ; should become ((5 * y)+(x ^ 6))
(make-sum '(x + y) (make-sum'(x + y)'(x + y)))
(make-sum '(3 * y)'(x + y))
(make-sum(make-sum 4 5)(make-sum 6 'x))
(make-sum(make-sum 4 5)(make-sum 'x 6))
(make-sum(make-sum 6 'x)(make-sum 4 5))
(make-sum(make-sum 'x 6)(make-sum 4 5))
(make-sum(make-sum 'x 6)(make-sum 4 'y))
;PRODUCT
(define (make-product m1 m2)
(define (handle-vars v1 v2)
(if(eq? v1 v2)
(list v1 '^ 2)
(make-product v1 v2)))
(define (make-flat-sum num sum)
(append (list num '*) (if-list sum)))
(define (simplify-num-sum n s)
(cond((number? (addend s))(make-flat-sum(make-product n (addend s))(list (augend s))))
(else (make-flat-sum(make-product n (augend s))(list (addend s))))))
(define (simplify-sums s1 s2)
(cond((number-or-eq-symbol?(addend s1)(addend s2))(make-flat-sum(handle-vars (addend s1)(addend s2))(handle-vars (augend s1)(augend s2))))
((number-or-eq-symbol?(augend s1)(addend s2))(make-flat-sum(handle-vars (augend s1)(addend s2))(handle-vars (addend s1)(augend s2))))
((number-or-eq-symbol?(addend s1)(augend s2))(make-flat-sum(handle-vars (addend s1)(augend s2))(handle-vars (augend s1)(addend s2))))
((number-or-eq-symbol?(augend s1)(augend s2))(make-flat-sum(handle-vars (addend s1)(augend s2))(handle-vars (augend s1)(addend s2))))
(else(append m1 (list '+) m2))))
(cond ((or (=number? m1 0)
(=number? m2 0))
0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2))
(* m1 m2))
((and (number? m1) (number? m2))(+ m1 m2))
((or(sum? m1)(exponentiation? m1))(cons m1 (cons '* (cons m2 '()))))
((or(sum? m2)(exponentiation? m2))(cons m1 (cons '* (cons m2 '()))))
;((product? m1))
((and (product? m1)(product? m2))(simplify-sums m1 m2))
((and (product? m1)(number? m2))(simplify-num-sum m2 m1))
((and (product? m2)(number? m1))(simplify-num-sum m1 m2))
(else (append(if-list m1) (list '*)(if-list m2)))))
(displayln "book infix example");(x + 3 * (x + y + 2))
(make-sum 'x (make-product '3 (make-sum 'x (make-sum 'y 2))))
(displayln "make-product test")
(make-product(make-product 'x '4)(make-product 'x 7))
(make-product(make-product 'x '4)(make-product 'x 'y))
(make-product(make-product 'x 'y)(make-product 'x 5))
(make-product(make-product 'x 'y)(make-product 'x 'y))
(make-product(make-product 4 5)(make-product 6 'x))
(make-product(make-product 4 5)(make-product 6 7))
(make-product 'x (make-product 6 8))
(make-product '10 (make-product 6 8))
(make-product(make-product 'x 'y)(make-sum 'x 5))
(define (multiplier p) (car p))
(define (multiplicand p) (arb-args-infix p))
;(multiplicand '(3 * x))
;EXPONENTIATION
(define (make-exponentiation b e)
(cond((and (=number? b 0)(=number? e 0))error "Zero to the zeroth power is undefined.")
((=number? e 0) 1)
((=number? e 1) b)
((and (number? b) (number? e))
(expt b e))
(else (list b '^ e))))
;(displayln "exponentiation")
;(exponentiation? '(^ x 4))
(define (base e) (car e))
(define (exponent e) (caddr e))
;
;
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product
(multiplier exp)
(deriv (multiplicand exp) var))
(make-product
(deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product (exponent exp)
(make-exponentiation
(base exp)
(- (exponent exp) 1)))
(deriv (base exp) var)))
(else (error "unknown expression
type: DERIV" exp))))
(deriv '(x + 3) 'x) ;1
(deriv '(x * y) 'x) ; y
(deriv '(x * 3 * y) 'x); 3 * y
(deriv '(x + (3 * (x + (y + 2)))) 'x)
(deriv '((y * x) * (x + 3)) 'x) ;((x * y) + (y * (x + 3))) OR y(x+3)+yx OR y(2x+3)
;;a x 2 + b x + c -> 2 a x + b
(deriv '((a * (x ^ 2))+(b * x) + c) 'x)
(deriv '((4 * (x ^ 4))+(3 * (x ^ 3))+(2 * (x ^ 2))+(1 * (x ^ 1)) ) 'x)