forked from eladrich/pixel2style2pixel
-
Notifications
You must be signed in to change notification settings - Fork 12
/
face_detection.py
135 lines (111 loc) · 5.41 KB
/
face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2021 Justin Pinkney
import dlib
import numpy as np
import os
from PIL import Image
from PIL import ImageOps
from scipy.ndimage import gaussian_filter
import cv2
MODEL_PATH = "shape_predictor_5_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
def align(image_in, face_index=0, output_size=256):
landmarks = list(get_landmarks(image_in))
n_faces = len(landmarks)
face_index = min(n_faces-1, face_index)
if n_faces == 0:
aligned_image = image_in
quad = None
else:
aligned_image, quad = image_align(image_in, landmarks[face_index], output_size=output_size)
return aligned_image, n_faces, quad
def composite_images(quad, img, output):
"""Composite an image into and output canvas according to transformed co-ords"""
output = output.convert("RGBA")
img = img.convert("RGBA")
input_size = img.size
src = np.array(((0, 0), (0, input_size[1]), input_size, (input_size[0], 0)), dtype=np.float32)
dst = np.float32(quad)
mtx = cv2.getPerspectiveTransform(dst, src)
img = img.transform(output.size, Image.PERSPECTIVE, mtx.flatten(), Image.BILINEAR)
output.alpha_composite(img)
return output.convert("RGB")
def get_landmarks(image):
"""Get landmarks from PIL image"""
shape_predictor = dlib.shape_predictor(MODEL_PATH)
max_size = max(image.size)
reduction_scale = int(max_size/512)
if reduction_scale == 0:
reduction_scale = 1
downscaled = image.reduce(reduction_scale)
img = np.array(downscaled)
detections = detector(img, 0)
for detection in detections:
try:
face_landmarks = [(reduction_scale*item.x, reduction_scale*item.y) for item in shape_predictor(img, detection).parts()]
yield face_landmarks
except Exception as e:
print(e)
def image_align(src_img, face_landmarks, output_size=512, transform_size=2048, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False):
# Align function modified from ffhq-dataset
# See https://github.com/NVlabs/ffhq-dataset for license
lm = np.array(face_landmarks)
lm_eye_left = lm[2:3] # left-clockwise
lm_eye_right = lm[0:1] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = 0.71*(eye_right - eye_left)
mouth_avg = lm[4]
eye_to_mouth = 1.35*(mouth_avg - eye_avg)
# Choose oriented crop rectangle.
x = eye_to_eye.copy()
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= x_scale
y = np.flipud(x) * [-y_scale, y_scale]
c = eye_avg + eye_to_mouth * em_scale
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
quad_orig = quad.copy()
qsize = np.hypot(*x) * 2
img = src_img.convert('RGBA').convert('RGB')
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.uint8(np.clip(np.rint(img), 0, 255))
if alpha:
mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
img = np.concatenate((img, mask), axis=2)
img = Image.fromarray(img, 'RGBA')
else:
img = Image.fromarray(img, 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), Image.ANTIALIAS)
return img, quad_orig