-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
339 lines (277 loc) · 8.26 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os.path as osp
from dataclasses import dataclass
import torch
from torchvision import transforms as T
from utils.img_transforms import RandomCroping, RandomErasing
@dataclass
class BASIC_CONFIG:
OUT_FEATURES = 512
AGG = "concat" #'sum
INPUT_SIZE = (384, 192)
LR = 0.0035
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
COLOR_JITTER = False
RANDOM_ERASING = True
train_transform_list = [
T.Resize(INPUT_SIZE),
RandomCroping(p=0.5),
T.RandomHorizontalFlip(p=0.5),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
if COLOR_JITTER:
train_transform_list = [
T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0),
] + train_transform_list
if RANDOM_ERASING:
train_transform_list += [
RandomErasing(
probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=(0.4914, 0.4822, 0.4465)
)
]
TRAIN_TRANSFORM = T.Compose(train_transform_list)
TEST_TRANSFORM = T.Compose(
[
T.Resize(INPUT_SIZE),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
DATA_PATH = "./data"
DATASET_PATH = "/home/dustin/Documents/Research/P003 - 2D ReID/Datasets/"
DATASET_NAME = "ltcc"
TRAIN_PATH = osp.join(DATASET_PATH, DATASET_NAME, "train")
if DATASET_NAME == "market1501" or DATASET_NAME == "cuhk03":
CLOTH_CHANGING_MODE = False
else:
CLOTH_CHANGING_MODE = True
TRAIN_JSON_PATH = osp.join(DATA_PATH, DATASET_NAME, "jsons/train.json")
QUERY_JSON_PATH = osp.join(DATA_PATH, DATASET_NAME, "jsons/query.json")
GALLERY_JSON_PATH = osp.join(DATA_PATH, DATASET_NAME, "jsons/gallery.json")
ORIENTATION_GUIDED = False
SAMPLER = True
OPTIMIZER = "adam" # or 'sgd'
WEIGHT_DECAY = 5e-4
USE_WARM_EPOCH = False
WARM_EPOCH = 5
WARM_UP = 0.1
"""
Loss functions
"""
CLA_LOSS = "crossentropylabelsmooth" # crossentropy, arcface, cosface, circle
CLA_S = 16.0
CLA_M = 0.0
USE_TRIPLET_LOSS = False
if USE_TRIPLET_LOSS:
TRIPLET_LOSS = "triplet" # circle
TRIP_M = 0.3
USE_PAIRWISE_LOSS = True
if USE_PAIRWISE_LOSS:
PAIR_LOSS = "triplet" # contrastive, cosface, circle
PAIR_M = 0.3
PAIR_S = 16.0
WEIGHT_PAIR = 0.2
# use clothes loss
USE_CLOTHES_LOSS = True
if USE_CLOTHES_LOSS:
CLOTHES_CLA_LOSS = "cosface"
CAL = "cal"
EPSILON = 0.1
START_EPOCH_CC = 25
START_EPOCH_ADV = 25
TRAIN_FROM_SCRATCH = True
TRAIN_FROM_CKPT = False
CKPT_PATH = (
"work_space/lightning_logs/version_7/checkpoints/epoch=14-step=17955.ckpt"
)
TRAIN_SHAPE = True
NUM_REFINE_LAYERS = 3 # or 2 or 1
GCN_LAYER_TYPE = "GCNConv" # ResGCN or GCNConv
NUM_GCN_LAYERS = 3
AGGREGATION_TYPE = "max" # max
EPOCHS = 60
BATCH_SIZE = 64
PIN_MEMORY = True
NUM_WORKER = 4
OUT_FEATURES = 512
NORM_FEATURE = False
TEST_WITH_POSE = False
SAVE_PATH = "./work_space/save"
LOG_PATH = "./work_space/"
NAME = f"model_{DATASET_NAME}_{EPOCHS}epochs_{LR}lr_{BATCH_SIZE}bs"
if ORIENTATION_GUIDED:
NAME += "_ori"
if TRAIN_FROM_SCRATCH:
NAME += "_fromscratch"
else:
NAME += "_transfered"
if SAMPLER:
NAME += "_sampler"
if USE_WARM_EPOCH:
NAME += f"_{WARM_EPOCH}warmepoch"
if NORM_FEATURE:
NAME += "_norm"
NAME += f"_{CLA_LOSS}"
if USE_TRIPLET_LOSS:
NAME += f"_{TRIPLET_LOSS}"
if USE_PAIRWISE_LOSS:
NAME += f"_{PAIR_LOSS}"
if USE_CLOTHES_LOSS:
NAME += "_clothesLoss"
if TRAIN_SHAPE:
NAME += f"_{NUM_REFINE_LAYERS}Refine"
NAME += f"_{GCN_LAYER_TYPE}"
NAME += f"_{NUM_GCN_LAYERS}GCN"
NAME += f"_{AGGREGATION_TYPE}Agg"
MODEL_NAME = NAME + ".pth"
@dataclass
class DATASET_CFG:
DATAPATH = "/media/jurgen/personal/personal_research/person-reid/reid/datasets/Market-1501-v15.09.15/bounding_box_test/"
BATCH_SIZE = 32
@dataclass
class MARKET1501:
IMAGE_EXTENSIONS = [".jpg", ".jpeg", ".png"]
@dataclass
class FT_NET_CFG:
R50_STRIDE = 1
DROP_RATE = 0.5
LINEAR_NUM = 512
PRETRAINED = "pretrained/net_pretrained_market.pth"
@dataclass
class CFG:
PRETRAINED = "resources/model.pth"
DATAPATH = "/media/jurgen/personal/personal_research/person-reid/reid/datasets/Market-1501-v15.09.15/bounding_box_test/"
BATCH_SIZE = 32
@dataclass
class HRNET_CFG:
AUTO_RESUME = False
@dataclass
class CUDNN:
BENCHMARK = True
DETERMINISTIC = False
ENABLED = True
DATA_DIR = ""
GPUS = (0, 1, 2, 3)
OUTPUT_DIR = "output"
LOG_DIR = "log"
WORKERS = "8x"
PRINT_FREQ = 30
@dataclass
class DATASET:
COLOR_RGB = True
DATASET = "COCO_HOE_Dataset"
DATA_FORMAT = "jpg"
FLIP = True
NUM_JOINTS_HALF_BODY = 8
PROB_HALF_BODY = 0.3
TRAIN_ROOT = "data/coco"
VAL_ROOT = """da cfg.defrost()
cfg.merge_from_list("")
cfg.DATA_DIR = ""
cfg.OUTPUT_DIR = ""
cfg.LOG_DIR = ""ta/coco
"""
ROT_FACTOR = 45
SCALE_FACTOR = 0.35
HOE_SIGMA = 4.0
@dataclass
class MODEL:
INIT_WEIGHTS = True
USE_FEATUREMAP = True
NAME = "pose_hrnet"
NUM_JOINTS = 17
PRETRAINED = "models/pose_hrnet_w32_256x192.pth"
TARGET_TYPE = "gaussian"
IMAGE_SIZE = [192, 256]
HEATMAP_SIZE = [48, 64]
SIGMA = 2
@dataclass
class EXTRA:
PRETRAINED_LAYERS = [
"conv1",
"bn1",
"conv2",
"bn2",
"layer1",
"transition1",
"stage2",
"transition2",
"stage3",
"transition3",
"stage4",
]
FINAL_CONV_KERNEL = 1
@dataclass
class STAGE2:
NUM_MODULES = 1
NUM_BRANCHES = 2
BLOCK = "BASIC"
NUM_BLOCKS = [4, 4]
NUM_CHANNELS = [32, 64]
FUSE_METHOD = "SUM"
@dataclass
class STAGE3:
NUM_MODULES = 4
NUM_BRANCHES = 3
BLOCK = "BASIC"
NUM_BLOCKS = [4, 4, 4]
NUM_CHANNELS = [32, 64, 128]
FUSE_METHOD = "SUM"
@dataclass
class STAGE4:
NUM_MODULES = 3
NUM_BRANCHES = 4
BLOCK = "BASIC"
NUM_BLOCKS = [4, 4, 4, 4]
NUM_CHANNELS = [32, 64, 128, 256]
FUSE_METHOD = "SUM"
@dataclass
class LOSS:
USE_DIFFERENT_JOINTS_WEIGHT = False
USE_TARGET_WEIGHT = True
@dataclass
class TRAIN:
BATCH_SIZE_PER_GPU = 32
SHUFFLE = True
BEGIN_EPOCH = 0
END_EPOCH = 80
OPTIMIZER = "adam"
LR = 0.001
LR_FACTOR = 0.1
LR_STEP = [170, 200]
WD = 0.0001
GAMMA1 = 0.99
GAMMA2 = 0.0
MOMENTUM = 0.9
NESTEROV = False
@dataclass
class TEST:
BATCH_SIZE_PER_GPU = 32
COCO_BBOX_FILE = "data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json"
BBOX_THRE = 1.0
IMAGE_THRE = 0.0
IN_VIS_THRE = 0.2
MODEL_FILE = "output/tud_dataset/pose_hrnet/lrle-3/model_best.pth"
NMS_THRE = 1.0
OKS_THRE = 0.9
USE_GT_BBOX = True
FLIP_TEST = True
POST_PROCESS = True
SHIFT_HEATMAP = True
@dataclass
class DEBUG:
DEBUG = True
SAVE_BATCH_IMAGES_GT = True
SAVE_BATCH_IMAGES_PRED = True
SAVE_HEATMAPS_GT = True
SAVE_HEATMAPS_PRED = True
@dataclass
class SHAPE_EMBEDDING_CFG:
POSE_N_FEATURES = 3
N_HIDDEN = 1024
OUT_FEATURES = 2048
RELATION_LAYERS = [[2048, 1024], [1024, 1024], [1024, 512]]
EDGE_INDEX = [
[1, 1, 2, 3, 5, 6, 1, 8, 9, 1, 11, 12, 1, 0, 14, 0, 15, 2, 5],
[2, 5, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 0, 14, 16, 15, 17, 16, 17],
]