-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmain.py
150 lines (123 loc) · 3.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""Conversational QA Chain"""
from __future__ import annotations
import os
import re
import time
import logging
from langchain.chat_models import ChatOpenAI, ChatAnthropic
from langchain.memory import ConversationTokenBufferMemory
from convo_qa_chain import ConvoRetrievalChain
from toolkit.together_api_llm import TogetherLLM
from toolkit.retrivers import MyRetriever
from toolkit.local_llm import load_local_llm
from toolkit.utils import (
Config,
choose_embeddings,
load_embedding,
load_pickle,
check_device,
)
# Load the config file
configs = Config("configparser.ini")
logger = logging.getLogger(__name__)
os.environ["OPENAI_API_KEY"] = configs.openai_api_key
os.environ["ANTHROPIC_API_KEY"] = configs.anthropic_api_key
embedding = choose_embeddings(configs.embedding_name)
db_store_path = configs.db_dir
# get models
def get_llm(llm_name: str, temperature: float, max_tokens: int):
"""Get the LLM model from the model name."""
if not os.path.exists(configs.local_model_dir):
os.makedirs(configs.local_model_dir)
splits = llm_name.split("|") # [provider, model_name, model_file]
if "openai" in splits[0].lower():
llm_model = ChatOpenAI(
model=splits[1],
temperature=temperature,
max_tokens=max_tokens,
)
elif "anthropic" in splits[0].lower():
llm_model = ChatAnthropic(
model=splits[1],
temperature=temperature,
max_tokens_to_sample=max_tokens,
)
elif "together" in splits[0].lower():
llm_model = TogetherLLM(
model=splits[1],
temperature=temperature,
max_tokens=max_tokens,
)
elif "huggingface" in splits[0].lower():
llm_model = load_local_llm(
model_id=splits[1],
model_basename=splits[-1],
temperature=temperature,
max_tokens=max_tokens,
device_type=check_device(),
)
else:
raise ValueError("Invalid Model Name")
return llm_model
llm = get_llm(configs.model_name, configs.temperature, configs.max_llm_generation)
# load retrieval database
db_embedding_chunks_small = load_embedding(
store_name=configs.embedding_name,
embedding=embedding,
suffix="chunks_small",
path=db_store_path,
)
db_embedding_chunks_medium = load_embedding(
store_name=configs.embedding_name,
embedding=embedding,
suffix="chunks_medium",
path=db_store_path,
)
db_docs_chunks_small = load_pickle(
prefix="docs_pickle", suffix="chunks_small", path=db_store_path
)
db_docs_chunks_medium = load_pickle(
prefix="docs_pickle", suffix="chunks_medium", path=db_store_path
)
file_names = load_pickle(prefix="file", suffix="names", path=db_store_path)
# Initialize the retriever
my_retriever = MyRetriever(
llm=llm,
embedding_chunks_small=db_embedding_chunks_small,
embedding_chunks_medium=db_embedding_chunks_medium,
docs_chunks_small=db_docs_chunks_small,
docs_chunks_medium=db_docs_chunks_medium,
first_retrieval_k=configs.first_retrieval_k,
second_retrieval_k=configs.second_retrieval_k,
num_windows=configs.num_windows,
retriever_weights=configs.retriever_weights,
)
# Initialize the memory
memory = ConversationTokenBufferMemory(
llm=llm,
memory_key="chat_history",
input_key="question",
output_key="answer",
return_messages=True,
max_token_limit=configs.max_chat_history,
)
# Initialize the QA chain
qa = ConvoRetrievalChain.from_llm(
llm,
my_retriever,
file_names=file_names,
memory=memory,
return_source_documents=False,
return_generated_question=False,
)
if __name__ == "__main__":
while True:
user_input = input("Human: ")
start_time = time.time()
user_input_ = re.sub(r"^Human: ", "", user_input)
print("*" * 6)
resp = qa({"question": user_input_})
print()
print(f"AI:{resp['answer']}")
print(f"Time used: {time.time() - start_time}")
print("-" * 60)