-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtrain.py
105 lines (99 loc) · 4.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from argparse import ArgumentParser
import tempfile
import sys
import caffe
import net as N
from caffe.proto import caffe_pb2 as PB
def create_solver(solver_param, file_name=""):
if file_name:
f = open(file_name, 'w')
else:
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
f.write(str(solver_param))
f.close()
solver = caffe.get_solver(f.name)
return solver
def create_solver_proto(train_net, test_net, lr, prefix,
test_iter=300, test_interval=10000,
max_iter=2e6, snapshot=100000, gpu=0, debug_info=False):
solver = PB.SolverParameter()
solver.train_net = train_net
solver.test_net.extend([test_net])
solver.test_iter.extend([test_iter])
solver.test_interval = test_interval
solver.display = 1000
solver.max_iter = max_iter
solver.snapshot = snapshot
solver.snapshot_prefix = prefix
solver.snapshot_format = PB.SolverParameter.HDF5
solver.solver_mode = PB.SolverParameter.GPU
solver.solver_type = PB.SolverParameter.ADAM
solver.base_lr = lr
solver.lr_policy = "fixed"
solver.average_loss = 10000
solver.momentum = 0.9
solver.momentum2 = 0.999
solver.delta= 1e-08
solver.debug_info = debug_info
return solver
def main(model, lr, prefix, weights, snapshot, mean, batch_size,
test_batch_size, num_act, T, K, num_step, num_iter,
gpu, debug_info, train_data, test_data, load_to_mem):
caffe.set_mode_gpu()
caffe.set_device(gpu[0])
train_net_file = prefix + '_train.prototxt'
test_net_file = prefix + '_test.prototxt'
solver_file_name= prefix + '_solver.prototxt'
train_net_file, train_proto = N.create_netfile(model, train_data,
mean, T, K, batch_size, num_act, num_step=num_step, file_name=train_net_file,
load_to_mem=load_to_mem)
test_net_file, test_proto= N.create_netfile(model, test_data,
mean, T, K, test_batch_size, num_act, num_step=num_step, file_name=test_net_file,
load_to_mem=load_to_mem)
solver_proto = create_solver_proto(train_net_file, test_net_file,
lr, prefix, max_iter=num_iter, debug_info=debug_info)
solver = create_solver(solver_proto, file_name=solver_file_name)
if snapshot:
solver.restore(snapshot)
elif weights:
solver.net.copy_from(weights)
solver.test_nets[0].copy_from(weights)
solver.solve()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--model", type=int, dest="model",
default=1, help="1:CNN 2:RNN")
parser.add_argument("--lr", type=float, dest="lr",
default=0.0001, help="Base learning rate")
parser.add_argument("--prefix", type=str, dest="prefix",
default="", help="Path for results")
parser.add_argument("--weights", type=str, dest="weights",
default="", help="Pre-trained caffemodel")
parser.add_argument("--mean", type=str, dest="mean",
default="mean.binaryproto", help="Mean proto file")
parser.add_argument("--snapshot", type=str, dest="snapshot",
default="", help="Pre-trained solverstate")
parser.add_argument("--batch_size", type=int, dest="batch_size",
default=4, help="Batch size")
parser.add_argument("--test_batch_size", type=int, dest="test_batch_size",
default=30, help="Batch size for test")
parser.add_argument("--train_data", type=str, dest="train_data",
default="train", help="Directory for training data")
parser.add_argument("--test_data", type=str, dest="test_data",
default="test", help="Directory for test data")
parser.add_argument("--T", type=int, dest="T",
default=21, help="Number of unrolled time steps")
parser.add_argument("--K", type=int, dest="K",
default=11, help="Number of initial frames")
parser.add_argument("--num_act", type=int, dest="num_act",
default=0, help="Number of actions")
parser.add_argument("--num_step", type=int, dest="num_step",
default=1, help="Number of prediction steps")
parser.add_argument("--num_iter", type=int, dest="num_iter",
default=2000000, help="Number of iterations")
parser.add_argument("--gpu", type=int, nargs='+', dest="gpu", help="GPU device id")
parser.add_argument("--debug_info", dest="debug_info", action="store_true")
parser.add_argument("--load_to_mem", dest="load_to_mem", action="store_true")
parser.set_defaults(debug_info=False, load_to_mem=False)
args = parser.parse_args()
main(**vars(args))