forked from kuan-wang/pytorch-mobilenet-v3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilenetv3.py
executable file
·250 lines (208 loc) · 8.28 KB
/
mobilenetv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['MobileNetV3', 'mobilenetv3']
def conv_bn(inp, oup, stride, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU):
return nn.Sequential(
conv_layer(inp, oup, 3, stride, 1, bias=False),
norm_layer(oup),
nlin_layer(inplace=True)
)
def conv_1x1_bn(inp, oup, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU):
return nn.Sequential(
conv_layer(inp, oup, 1, 1, 0, bias=False),
norm_layer(oup),
nlin_layer(inplace=True)
)
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3., inplace=self.inplace) / 6.
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3., inplace=self.inplace) / 6.
class SEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
Hsigmoid()
# nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class Identity(nn.Module):
def __init__(self, channel):
super(Identity, self).__init__()
def forward(self, x):
return x
def make_divisible(x, divisible_by=8):
import numpy as np
return int(np.ceil(x * 1. / divisible_by) * divisible_by)
class MobileBottleneck(nn.Module):
def __init__(self, inp, oup, kernel, stride, exp, se=False, nl='RE'):
super(MobileBottleneck, self).__init__()
assert stride in [1, 2]
assert kernel in [3, 5]
padding = (kernel - 1) // 2
self.use_res_connect = stride == 1 and inp == oup
conv_layer = nn.Conv2d
norm_layer = nn.BatchNorm2d
if nl == 'RE':
nlin_layer = nn.ReLU # or ReLU6
elif nl == 'HS':
nlin_layer = Hswish
else:
raise NotImplementedError
if se:
SELayer = SEModule
else:
SELayer = Identity
self.conv = nn.Sequential(
# pw
conv_layer(inp, exp, 1, 1, 0, bias=False),
norm_layer(exp),
nlin_layer(inplace=True),
# dw
conv_layer(exp, exp, kernel, stride, padding, groups=exp, bias=False),
norm_layer(exp),
SELayer(exp),
nlin_layer(inplace=True),
# pw-linear
conv_layer(exp, oup, 1, 1, 0, bias=False),
norm_layer(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
def __init__(self, n_class=1000, input_size=224, dropout=0.8, mode='small', width_mult=1.0):
super(MobileNetV3, self).__init__()
input_channel = 16
last_channel = 1280
if mode == 'large':
# refer to Table 1 in paper
mobile_setting = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'RE', 1],
[3, 64, 24, False, 'RE', 2],
[3, 72, 24, False, 'RE', 1],
[5, 72, 40, True, 'RE', 2],
[5, 120, 40, True, 'RE', 1],
[5, 120, 40, True, 'RE', 1],
[3, 240, 80, False, 'HS', 2],
[3, 200, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 480, 112, True, 'HS', 1],
[3, 672, 112, True, 'HS', 1],
[5, 672, 160, True, 'HS', 2],
[5, 960, 160, True, 'HS', 1],
[5, 960, 160, True, 'HS', 1],
]
elif mode == 'small':
# refer to Table 2 in paper
mobile_setting = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'RE', 2],
[3, 72, 24, False, 'RE', 2],
[3, 88, 24, False, 'RE', 1],
[5, 96, 40, True, 'HS', 2],
[5, 240, 40, True, 'HS', 1],
[5, 240, 40, True, 'HS', 1],
[5, 120, 48, True, 'HS', 1],
[5, 144, 48, True, 'HS', 1],
[5, 288, 96, True, 'HS', 2],
[5, 576, 96, True, 'HS', 1],
[5, 576, 96, True, 'HS', 1],
]
else:
raise NotImplementedError
# building first layer
assert input_size % 32 == 0
last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
self.features = [conv_bn(3, input_channel, 2, nlin_layer=Hswish)]
self.classifier = []
# building mobile blocks
for k, exp, c, se, nl, s in mobile_setting:
output_channel = make_divisible(c * width_mult)
exp_channel = make_divisible(exp * width_mult)
self.features.append(MobileBottleneck(input_channel, output_channel, k, s, exp_channel, se, nl))
input_channel = output_channel
# building last several layers
if mode == 'large':
last_conv = make_divisible(960 * width_mult)
self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish))
self.features.append(nn.AdaptiveAvgPool2d(1))
self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0))
self.features.append(Hswish(inplace=True))
elif mode == 'small':
last_conv = make_divisible(576 * width_mult)
self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish))
# self.features.append(SEModule(last_conv)) # refer to paper Table2, but I think this is a mistake
self.features.append(nn.AdaptiveAvgPool2d(1))
self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0))
self.features.append(Hswish(inplace=True))
else:
raise NotImplementedError
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(p=dropout), # refer to paper section 6
nn.Linear(last_channel, n_class),
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.mean(3).mean(2)
x = self.classifier(x)
return x
def _initialize_weights(self):
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
def mobilenetv3(pretrained=False, **kwargs):
model = MobileNetV3(**kwargs)
if pretrained:
state_dict = torch.load('mobilenetv3_small_67.4.pth.tar')
model.load_state_dict(state_dict, strict=True)
# raise NotImplementedError
return model
if __name__ == '__main__':
net = mobilenetv3()
print('mobilenetv3:\n', net)
print('Total params: %.2fM' % (sum(p.numel() for p in net.parameters())/1000000.0))
input_size=(1, 3, 224, 224)
# pip install --upgrade git+https://github.com/kuan-wang/pytorch-OpCounter.git
from thop import profile
flops, params = profile(net, input_size=input_size)
# print(flops)
# print(params)
print('Total params: %.2fM' % (params/1000000.0))
print('Total flops: %.2fM' % (flops/1000000.0))
x = torch.randn(input_size)
out = net(x)