This repository has been archived by the owner on Jan 25, 2023. It is now read-only.
forked from weidai11/cryptopp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
algebra.h
453 lines (354 loc) · 16 KB
/
algebra.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// algebra.h - originally written and placed in the public domain by Wei Dai
/// \file algebra.h
/// \brief Classes for performing mathematics over different fields
#ifndef CRYPTOPP_ALGEBRA_H
#define CRYPTOPP_ALGEBRA_H
#include "config.h"
#include "integer.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
class Integer;
/// \brief Abstract group
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
{
public:
typedef T Element;
virtual ~AbstractGroup() {}
/// \brief Compare two elements for equality
/// \param a first element
/// \param b second element
/// \returns true if the elements are equal, false otherwise
/// \details Equal() tests the elements for equality using <tt>a==b</tt>
virtual bool Equal(const Element &a, const Element &b) const =0;
/// \brief Provides the Identity element
/// \returns the Identity element
virtual const Element& Identity() const =0;
/// \brief Adds elements in the group
/// \param a first element
/// \param b second element
/// \returns the sum of <tt>a</tt> and <tt>b</tt>
virtual const Element& Add(const Element &a, const Element &b) const =0;
/// \brief Inverts the element in the group
/// \param a first element
/// \returns the inverse of the element
virtual const Element& Inverse(const Element &a) const =0;
/// \brief Determine if inversion is fast
/// \returns true if inversion is fast, false otherwise
virtual bool InversionIsFast() const {return false;}
/// \brief Doubles an element in the group
/// \param a the element
/// \returns the element doubled
virtual const Element& Double(const Element &a) const;
/// \brief Subtracts elements in the group
/// \param a first element
/// \param b second element
/// \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
virtual const Element& Subtract(const Element &a, const Element &b) const;
/// \brief TODO
/// \param a first element
/// \param b second element
/// \returns TODO
virtual Element& Accumulate(Element &a, const Element &b) const;
/// \brief Reduces an element in the congruence class
/// \param a element to reduce
/// \param b the congruence class
/// \returns the reduced element
virtual Element& Reduce(Element &a, const Element &b) const;
/// \brief Performs a scalar multiplication
/// \param a multiplicand
/// \param e multiplier
/// \returns the product
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
/// \brief TODO
/// \param x first multiplicand
/// \param e1 the first multiplier
/// \param y second multiplicand
/// \param e2 the second multiplier
/// \returns TODO
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
/// \brief Multiplies a base to multiple exponents in a group
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousMultiply() multiplies the base to each exponent in the exponents array and stores the
/// result at the respective position in the results array.
/// \details SimultaneousMultiply() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
};
/// \brief Abstract ring
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
{
public:
typedef T Element;
/// \brief Construct an AbstractRing
AbstractRing() {m_mg.m_pRing = this;}
/// \brief Copy construct an AbstractRing
/// \param source other AbstractRing
AbstractRing(const AbstractRing &source)
{CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;}
/// \brief Assign an AbstractRing
/// \param source other AbstractRing
AbstractRing& operator=(const AbstractRing &source)
{CRYPTOPP_UNUSED(source); return *this;}
/// \brief Determines whether an element is a unit in the group
/// \param a the element
/// \returns true if the element is a unit after reduction, false otherwise.
virtual bool IsUnit(const Element &a) const =0;
/// \brief Retrieves the multiplicative identity
/// \returns the multiplicative identity
virtual const Element& MultiplicativeIdentity() const =0;
/// \brief Multiplies elements in the group
/// \param a the multiplicand
/// \param b the multiplier
/// \returns the product of a and b
virtual const Element& Multiply(const Element &a, const Element &b) const =0;
/// \brief Calculate the multiplicative inverse of an element in the group
/// \param a the element
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
/// \brief Square an element in the group
/// \param a the element
/// \returns the element squared
virtual const Element& Square(const Element &a) const;
/// \brief Divides elements in the group
/// \param a the dividend
/// \param b the divisor
/// \returns the quotient
virtual const Element& Divide(const Element &a, const Element &b) const;
/// \brief Raises a base to an exponent in the group
/// \param a the base
/// \param e the exponent
/// \returns the exponentiation
virtual Element Exponentiate(const Element &a, const Integer &e) const;
/// \brief TODO
/// \param x first element
/// \param e1 first exponent
/// \param y second element
/// \param e2 second exponent
/// \returns TODO
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
/// \brief Exponentiates a base to multiple exponents in the Ring
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
/// result at the respective position in the results array.
/// \details SimultaneousExponentiate() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
/// \brief Retrieves the multiplicative group
/// \returns the multiplicative group
virtual const AbstractGroup<T>& MultiplicativeGroup() const
{return m_mg;}
private:
class MultiplicativeGroupT : public AbstractGroup<T>
{
public:
const AbstractRing<T>& GetRing() const
{return *m_pRing;}
bool Equal(const Element &a, const Element &b) const
{return GetRing().Equal(a, b);}
const Element& Identity() const
{return GetRing().MultiplicativeIdentity();}
const Element& Add(const Element &a, const Element &b) const
{return GetRing().Multiply(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return a = GetRing().Multiply(a, b);}
const Element& Inverse(const Element &a) const
{return GetRing().MultiplicativeInverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return GetRing().Divide(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return a = GetRing().Divide(a, b);}
const Element& Double(const Element &a) const
{return GetRing().Square(a);}
Element ScalarMultiply(const Element &a, const Integer &e) const
{return GetRing().Exponentiate(a, e);}
Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
{return GetRing().CascadeExponentiate(x, e1, y, e2);}
void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
{GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}
const AbstractRing<T> *m_pRing;
};
MultiplicativeGroupT m_mg;
};
// ********************************************************
/// \brief Base and exponent
/// \tparam T base class or type
/// \tparam E exponent class or type
template <class T, class E = Integer>
struct BaseAndExponent
{
public:
BaseAndExponent() {}
BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
T base;
E exponent;
};
// VC60 workaround: incomplete member template support
template <class Element, class Iterator>
Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
template <class Element, class Iterator>
Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
// ********************************************************
/// \brief Abstract Euclidean domain
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
{
public:
typedef T Element;
/// \brief Performs the division algorithm on two elements in the ring
/// \param r the remainder
/// \param q the quotient
/// \param a the dividend
/// \param d the divisor
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
/// \brief Performs a modular reduction in the ring
/// \param a the element
/// \param b the modulus
/// \returns the result of <tt>a%b</tt>.
virtual const Element& Mod(const Element &a, const Element &b) const =0;
/// \brief Calculates the greatest common denominator in the ring
/// \param a the first element
/// \param b the second element
/// \returns the the greatest common denominator of a and b.
virtual const Element& Gcd(const Element &a, const Element &b) const;
protected:
mutable Element result;
};
// ********************************************************
/// \brief Euclidean domain
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
{
public:
typedef T Element;
EuclideanDomainOf() {}
bool Equal(const Element &a, const Element &b) const
{return a==b;}
const Element& Identity() const
{return Element::Zero();}
const Element& Add(const Element &a, const Element &b) const
{return result = a+b;}
Element& Accumulate(Element &a, const Element &b) const
{return a+=b;}
const Element& Inverse(const Element &a) const
{return result = -a;}
const Element& Subtract(const Element &a, const Element &b) const
{return result = a-b;}
Element& Reduce(Element &a, const Element &b) const
{return a-=b;}
const Element& Double(const Element &a) const
{return result = a.Doubled();}
const Element& MultiplicativeIdentity() const
{return Element::One();}
const Element& Multiply(const Element &a, const Element &b) const
{return result = a*b;}
const Element& Square(const Element &a) const
{return result = a.Squared();}
bool IsUnit(const Element &a) const
{return a.IsUnit();}
const Element& MultiplicativeInverse(const Element &a) const
{return result = a.MultiplicativeInverse();}
const Element& Divide(const Element &a, const Element &b) const
{return result = a/b;}
const Element& Mod(const Element &a, const Element &b) const
{return result = a%b;}
void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
{Element::Divide(r, q, a, d);}
bool operator==(const EuclideanDomainOf<T> &rhs) const
{CRYPTOPP_UNUSED(rhs); return true;}
private:
mutable Element result;
};
/// \brief Quotient ring
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class QuotientRing : public AbstractRing<typename T::Element>
{
public:
typedef T EuclideanDomain;
typedef typename T::Element Element;
QuotientRing(const EuclideanDomain &domain, const Element &modulus)
: m_domain(domain), m_modulus(modulus) {}
const EuclideanDomain & GetDomain() const
{return m_domain;}
const Element& GetModulus() const
{return m_modulus;}
bool Equal(const Element &a, const Element &b) const
{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}
const Element& Identity() const
{return m_domain.Identity();}
const Element& Add(const Element &a, const Element &b) const
{return m_domain.Add(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return m_domain.Accumulate(a, b);}
const Element& Inverse(const Element &a) const
{return m_domain.Inverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return m_domain.Subtract(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return m_domain.Reduce(a, b);}
const Element& Double(const Element &a) const
{return m_domain.Double(a);}
bool IsUnit(const Element &a) const
{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
const Element& MultiplicativeIdentity() const
{return m_domain.MultiplicativeIdentity();}
const Element& Multiply(const Element &a, const Element &b) const
{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
const Element& Square(const Element &a) const
{return m_domain.Mod(m_domain.Square(a), m_modulus);}
const Element& MultiplicativeInverse(const Element &a) const;
bool operator==(const QuotientRing<T> &rhs) const
{return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}
protected:
EuclideanDomain m_domain;
Element m_modulus;
};
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "algebra.cpp"
#endif
#endif