forked from Reference-LAPACK/lapack-www
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README-CSD.txt
783 lines (747 loc) · 26.8 KB
/
README-CSD.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
== CS Decomposition (Brian Sutton, Randolph-Macon College, July 2010)
More info here:
* link:http://faculty.rmc.edu/bsutton/csd-software.html[The fundamental CS decomposition]
* link:http://faculty.rmc.edu/bsutton/csd.html[Computing the complete CS decomposition]
=== SRC directory
.Contribution
- CUNCSD, DORCSD, SORCSD, ZUNCSD:
Compute the CS decomposition of a block-partitioned orthogonal/unitary matrix.
- CUNBDB, DORBDB, SORBDB, ZUNBDB:
Simultaneously bidiagonalizes the blocks of a partitioned orthogonal/unitary matrix.
- CBBCSD, DBBCSD, SBBCSD, ZBBCSD:
Compute the CS decomposition of an orthogonal/unitary matrix in bidiagonal-block form.
- CLAPMR, DLAPMR, SLAMPR, ZLAPMR:
Rearranges the rows of a matrix as specified by a permutation vector.
- DLARTGP, SLARTGP:
Generate a plane rotation so that the "diagonal" (i.e., the scalar R) is nonnegative.
- DLARTGS, SLARTGS:
Auxiliary subroutines.
.CUNCSD, DORCSD, SORCSD, ZUNCSD
LAPACK Driver Routines
The routine is recursive. It will re-enter only once if convenient.
[source,fortran]
----
RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
$ SIGNS, M, P, Q, X11, LDX11, X12,
$ LDX12, X21, LDX21, X22, LDX22, THETA,
$ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
$ LDV2T, WORK, LWORK, IWORK, INFO )
*
* Brian Sutton
* Randolph-Macon College
* July 2010
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
$ LDX21, LDX22, LRWORK, LWORK, M, P, Q
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION THETA( * )
DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
$ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
$ * )
* ..
*
* Purpose
* =======
*
* DORCSD computes the CS decomposition of an M-by-M partitioned
* orthogonal matrix X:
*
* [ I 0 0 | 0 0 0 ]
* [ 0 C 0 | 0 -S 0 ]
* [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T
* X = [-----------] = [---------] [---------------------] [---------] .
* [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]
* [ 0 S 0 | 0 C 0 ]
* [ 0 0 I | 0 0 0 ]
*
* X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
* (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
* R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
* which R = MIN(P,M-P,Q,M-Q).
*
* Arguments
* =========
*
* JOBU1 (input) CHARACTER
* = 'Y': U1 is computed;
* otherwise: U1 is not computed.
*
* JOBU2 (input) CHARACTER
* = 'Y': U2 is computed;
* otherwise: U2 is not computed.
*
* JOBV1T (input) CHARACTER
* = 'Y': V1T is computed;
* otherwise: V1T is not computed.
*
* JOBV2T (input) CHARACTER
* = 'Y': V2T is computed;
* otherwise: V2T is not computed.
*
* TRANS (input) CHARACTER
* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
* order;
* otherwise: X, U1, U2, V1T, and V2T are stored in column-
* major order.
*
* SIGNS (input) CHARACTER
* = 'O': The lower-left block is made nonpositive (the
* "other" convention);
* otherwise: The upper-right block is made nonpositive (the
* "default" convention).
*
* M (input) INTEGER
* The number of rows and columns in X.
*
* P (input) INTEGER
* The number of rows in X11 and X12. 0 <= P <= M.
*
* Q (input) INTEGER
* The number of columns in X11 and X21. 0 <= Q <= M.
*
* X (input/workspace) DOUBLE PRECISION array, dimension (LDX,M)
* On entry, the orthogonal matrix whose CSD is desired.
*
* LDX (input) INTEGER
* The leading dimension of X. LDX >= MAX(1,M).
*
* THETA (output) DOUBLE PRECISION array, dimension (R), in which R =
* MIN(P,M-P,Q,M-Q).
* C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
* S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
*
* U1 (output) DOUBLE PRECISION array, dimension (P)
* If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
*
* LDU1 (input) INTEGER
* The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
* MAX(1,P).
*
* U2 (output) DOUBLE PRECISION array, dimension (M-P)
* If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
* matrix U2.
*
* LDU2 (input) INTEGER
* The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
* MAX(1,M-P).
*
* V1T (output) DOUBLE PRECISION array, dimension (Q)
* If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
* matrix V1**T.
*
* LDV1T (input) INTEGER
* The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
* MAX(1,Q).
*
* V2T (output) DOUBLE PRECISION array, dimension (M-Q)
* If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
* matrix V2**T.
*
* LDV2T (input) INTEGER
* The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
* MAX(1,M-Q).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
* If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
* ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
* define the matrix in intermediate bidiagonal-block form
* remaining after nonconvergence. INFO specifies the number
* of nonzero PHI's.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the work array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace) INTEGER array, dimension (M-Q)
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: DBBCSD did not converge. See the description of WORK
* above for details.
*
* Reference
* =========
*
* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
* Algorithms, 50(1):33-65, 2009.
*
* ===================================================================
----
.CUNBDB, DORBDB, SORBDB, ZUNBDB
LAPACK Computational Routines
DORBDB simultaneously bidiagonalizes the blocks of an M-by-M partitioned
orthogonal matrix X.
[source,fortran]
----
SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
$ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
$ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
*
* Brian Sutton
* Randolph-Macon College
* July 2010
*
* .. Scalar Arguments ..
CHARACTER SIGNS, TRANS
INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
$ Q
* ..
* .. Array Arguments ..
DOUBLE PRECISION PHI( * ), THETA( * )
DOUBLE PRECISION TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
$ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
$ X21( LDX21, * ), X22( LDX22, * )
* ..
*
* Purpose
* =======
*
* DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
* partitioned orthogonal matrix X:
*
* [ B11 | B12 0 0 ]
* [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T
* X = [-----------] = [---------] [----------------] [---------] .
* [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
* [ 0 | 0 0 I ]
*
* X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
* not the case, then X must be transposed and/or permuted. This can be
* done in constant time using the TRANS and SIGNS options. See DORCSD
* for details.)
*
* The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
* (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
* represented implicitly by Householder vectors.
*
* B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
* implicitly by angles THETA, PHI.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER
* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
* order;
* otherwise: X, U1, U2, V1T, and V2T are stored in column-
* major order.
*
* SIGNS (input) CHARACTER
* = 'O': The lower-left block is made nonpositive (the
* "other" convention);
* otherwise: The upper-right block is made nonpositive (the
* "default" convention).
*
* M (input) INTEGER
* The number of rows and columns in X.
*
* P (input) INTEGER
* The number of rows in X11 and X12. 0 <= P <= M.
*
* Q (input) INTEGER
* The number of columns in X11 and X21. 0 <= Q <=
* MIN(P,M-P,M-Q).
*
* X11 (input/output) DOUBLE PRECISION array, dimension (LDX11,Q)
* On entry, the top-left block of the orthogonal matrix to be
* reduced. On exit, the form depends on TRANS:
* If TRANS = 'N', then
* the columns of tril(X11) specify reflectors for P1,
* the rows of triu(X11,1) specify reflectors for Q1;
* else TRANS = 'T', and
* the rows of triu(X11) specify reflectors for P1,
* the columns of tril(X11,-1) specify reflectors for Q1.
*
* LDX11 (input) INTEGER
* The leading dimension of X11. If TRANS = 'N', then LDX11 >=
* P; else LDX11 >= Q.
*
* X12 (input/output) DOUBLE PRECISION array, dimension (LDX12,M-Q)
* On entry, the top-right block of the orthogonal matrix to
* be reduced. On exit, the form depends on TRANS:
* If TRANS = 'N', then
* the rows of triu(X12) specify the first P reflectors for
* Q2;
* else TRANS = 'T', and
* the columns of tril(X12) specify the first P reflectors
* for Q2.
*
* LDX12 (input) INTEGER
* The leading dimension of X12. If TRANS = 'N', then LDX12 >=
* P; else LDX11 >= M-Q.
*
* X21 (input/output) DOUBLE PRECISION array, dimension (LDX21,Q)
* On entry, the bottom-left block of the orthogonal matrix to
* be reduced. On exit, the form depends on TRANS:
* If TRANS = 'N', then
* the columns of tril(X21) specify reflectors for P2;
* else TRANS = 'T', and
* the rows of triu(X21) specify reflectors for P2.
*
* LDX21 (input) INTEGER
* The leading dimension of X21. If TRANS = 'N', then LDX21 >=
* M-P; else LDX21 >= Q.
*
* X22 (input/output) DOUBLE PRECISION array, dimension (LDX22,M-Q)
* On entry, the bottom-right block of the orthogonal matrix to
* be reduced. On exit, the form depends on TRANS:
* If TRANS = 'N', then
* the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
* M-P-Q reflectors for Q2,
* else TRANS = 'T', and
* the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
* M-P-Q reflectors for P2.
*
* LDX22 (input) INTEGER
* The leading dimension of X22. If TRANS = 'N', then LDX22 >=
* M-P; else LDX22 >= M-Q.
*
* THETA (output) DOUBLE PRECISION array, dimension (Q)
* The entries of the bidiagonal blocks B11, B12, B21, B22 can
* be computed from the angles THETA and PHI. See Further
* Details.
*
* PHI (output) DOUBLE PRECISION array, dimension (Q-1)
* The entries of the bidiagonal blocks B11, B12, B21, B22 can
* be computed from the angles THETA and PHI. See Further
* Details.
*
* TAUP1 (output) DOUBLE PRECISION array, dimension (P)
* The scalar factors of the elementary reflectors that define
* P1.
*
* TAUP2 (output) DOUBLE PRECISION array, dimension (M-P)
* The scalar factors of the elementary reflectors that define
* P2.
*
* TAUQ1 (output) DOUBLE PRECISION array, dimension (Q)
* The scalar factors of the elementary reflectors that define
* Q1.
*
* TAUQ2 (output) DOUBLE PRECISION array, dimension (M-Q)
* The scalar factors of the elementary reflectors that define
* Q2.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= M-Q.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* The bidiagonal blocks B11, B12, B21, and B22 are represented
* implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
* PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
* lower bidiagonal. Every entry in each bidiagonal band is a product
* of a sine or cosine of a THETA with a sine or cosine of a PHI. See
* [1] or DORCSD for details.
*
* P1, P2, Q1, and Q2 are represented as products of elementary
* reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
* using DORGQR and DORGLQ.
*
* Reference
* =========
*
* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
* Algorithms, 50(1):33-65, 2009.
*
* ====================================================================
----
.CBBCSD, DBBCSD, SBBCSD, ZBBCSD
LAPACK Computational Routines
DBBCSD computes the CS decomposition of an orthogonal matrix in
bidiagonal-block form.
[source,fortran]
----
SUBROUTINE DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
$ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
$ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
$ B22D, B22E, WORK, LWORK, INFO )
*
* Brian Sutton
* Randolph-Macon College
* July 2010
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
$ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
$ PHI( * ), THETA( * ), WORK( * )
DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * )
* ..
*
* Purpose
* =======
*
* DBBCSD computes the CS decomposition of an orthogonal matrix in
* bidiagonal-block form,
*
*
* [ B11 | B12 0 0 ]
* [ 0 | 0 -I 0 ]
* X = [----------------]
* [ B21 | B22 0 0 ]
* [ 0 | 0 0 I ]
*
* [ C | -S 0 0 ]
* [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
* = [---------] [---------------] [---------] .
* [ | U2 ] [ S | C 0 0 ] [ | V2 ]
* [ 0 | 0 0 I ]
*
* X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
* than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
* transposed and/or permuted. This can be done in constant time using
* the TRANS and SIGNS options. See DORCSD for details.)
*
* The bidiagonal matrices B11, B12, B21, and B22 are represented
* implicitly by angles THETA(1:Q) and PHI(1:Q-1).
*
* The orthogonal matrices U1, U2, V1T, and V2T are input/output.
* The input matrices are pre- or post-multiplied by the appropriate
* singular vector matrices.
*
* Arguments
* =========
*
* JOBU1 (input) CHARACTER
* = 'Y': U1 is updated;
* otherwise: U1 is not updated.
*
* JOBU2 (input) CHARACTER
* = 'Y': U2 is updated;
* otherwise: U2 is not updated.
*
* JOBV1T (input) CHARACTER
* = 'Y': V1T is updated;
* otherwise: V1T is not updated.
*
* JOBV2T (input) CHARACTER
* = 'Y': V2T is updated;
* otherwise: V2T is not updated.
*
* TRANS (input) CHARACTER
* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
* order;
* otherwise: X, U1, U2, V1T, and V2T are stored in column-
* major order.
*
* M (input) INTEGER
* The number of rows and columns in X, the orthogonal matrix in
* bidiagonal-block form.
*
* P (input) INTEGER
* The number of rows in the top-left block of X. 0 <= P <= M.
*
* Q (input) INTEGER
* The number of columns in the top-left block of X.
* 0 <= Q <= MIN(P,M-P,M-Q).
*
* THETA (input/output) DOUBLE PRECISION array, dimension (Q)
* On entry, the angles THETA(1),...,THETA(Q) that, along with
* PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
* form. On exit, the angles whose cosines and sines define the
* diagonal blocks in the CS decomposition.
*
* PHI (input/workspace) DOUBLE PRECISION array, dimension (Q-1)
* The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
* THETA(Q), define the matrix in bidiagonal-block form.
*
* U1 (input/output) DOUBLE PRECISION array, dimension (LDU1,P)
* On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
* by the left singular vector matrix common to [ B11 ; 0 ] and
* [ B12 0 0 ; 0 -I 0 0 ].
*
* LDU1 (input) INTEGER
* The leading dimension of the array U1.
*
* U2 (input/output) DOUBLE PRECISION array, dimension (LDU2,M-P)
* On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
* postmultiplied by the left singular vector matrix common to
* [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
*
* LDU2 (input) INTEGER
* The leading dimension of the array U2.
*
* V1T (input/output) DOUBLE PRECISION array, dimension (LDV1T,Q)
* On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
* by the transpose of the right singular vector
* matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
*
* LDV1T (input) INTEGER
* The leading dimension of the array V1T.
*
* V2T (input/output) DOUBLE PRECISION array, dimenison (LDV2T,M-Q)
* On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
* premultiplied by the transpose of the right
* singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
* [ B22 0 0 ; 0 0 I ].
*
* LDV2T (input) INTEGER
* The leading dimension of the array V2T.
*
* B11D (output) DOUBLE PRECISION array, dimension (Q)
* When DBBCSD converges, B11D contains the cosines of THETA(1),
* ..., THETA(Q). If DBBCSD fails to converge, then B11D
* contains the diagonal of the partially reduced top-left
* block.
*
* B11E (output) DOUBLE PRECISION array, dimension (Q-1)
* When DBBCSD converges, B11E contains zeros. If DBBCSD fails
* to converge, then B11E contains the superdiagonal of the
* partially reduced top-left block.
*
* B12D (output) DOUBLE PRECISION array, dimension (Q)
* When DBBCSD converges, B12D contains the negative sines of
* THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
* B12D contains the diagonal of the partially reduced top-right
* block.
*
* B12E (output) DOUBLE PRECISION array, dimension (Q-1)
* When DBBCSD converges, B12E contains zeros. If DBBCSD fails
* to converge, then B12E contains the subdiagonal of the
* partially reduced top-right block.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= MAX(1,8*Q).
*
* If LWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal size of the WORK array,
* returns this value as the first entry of the work array, and
* no error message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if DBBCSD did not converge, INFO specifies the number
* of nonzero entries in PHI, and B11D, B11E, etc.,
* contain the partially reduced matrix.
*
* Reference
* =========
*
* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
* Algorithms, 50(1):33-65, 2009.
*
* Internal Parameters
* ===================
*
* TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
* TOLMUL controls the convergence criterion of the QR loop.
* Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
* are within TOLMUL*EPS of either bound.
*
* ===================================================================
*
----
.CLAPMR, DLAPMR, SLAMPR, ZLAPMR
LAPACK Computational Routines
DLAPMR rearranges the rows of the M by N matrix X as specified by the
permutation K(1),K(2),...,K(M) of the integers 1,...,M.
Routines similar to DLAPMT: existing DLAPMT works on columns, new DLAPMR on
rows.
[source,fortran]
----
SUBROUTINE DLAPMR( FORWRD, M, N, X, LDX, K )
*
* Originally DLAPMT
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* Adapted to DLAPMR by Brian Sutton
* July 2010
*
* .. Scalar Arguments ..
LOGICAL FORWRD
INTEGER LDX, M, N
* ..
* .. Array Arguments ..
INTEGER K( * )
DOUBLE PRECISION X( LDX, * )
* ..
*
* Purpose
* =======
*
* DLAPMR rearranges the rows of the M by N matrix X as specified
* by the permutation K(1),K(2),...,K(M) of the integers 1,...,M.
* If FORWRD = .TRUE., forward permutation:
*
* X(K(I),*) is moved X(I,*) for I = 1,2,...,M.
*
* If FORWRD = .FALSE., backward permutation:
*
* X(I,*) is moved to X(K(I),*) for I = 1,2,...,M.
*
* Arguments
* =========
*
* FORWRD (input) LOGICAL
* = .TRUE., forward permutation
* = .FALSE., backward permutation
*
* M (input) INTEGER
* The number of rows of the matrix X. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix X. N >= 0.
*
* X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
* On entry, the M by N matrix X.
* On exit, X contains the permuted matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X, LDX >= MAX(1,M).
*
* K (input/output) INTEGER array, dimension (M)
* On entry, K contains the permutation vector. K is used as
* internal workspace, but reset to its original value on
* output.
*
* =====================================================================
*
----
.DLARTGP, SLARTGP
LAPACK Computational Routines
DLARTGP generates a plane rotation (also known as Givens rotation). The
difference with existing DLARTG is that the sign is chosen so that the
"diagonal" (i.e., the scalar R) is nonnegative. (Same difference as between
DLARFG and DLARFGP which use Householder.)
DLARTG/DLARTGP are slower, more accurate versions of the Level 1 BLAS routine
DROTG with some other slighter differences.
[source,fortran]
----
SUBROUTINE DLARTGP( F, G, CS, SN, R )
*
* Originally DLARTG
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* Adapted to DLARTGP by Brian Sutton
* July 2010
*
* .. Scalar Arguments ..
DOUBLE PRECISION CS, F, G, R, SN
* ..
*
* Purpose
* =======
*
* DLARTGP generates a plane rotation so that
*
* [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
* [ -SN CS ] [ G ] [ 0 ]
*
* This is a slower, more accurate version of the BLAS1 routine DROTG,
* with the following other differences:
* F and G are unchanged on return.
* If G=0, then CS=(+/-)1 and SN=0.
* If F=0 and (G .ne. 0), then CS=0 and SN=(+/-)1.
*
* The sign is chosen so that R >= 0.
*
* Arguments
* =========
*
* F (input) DOUBLE PRECISION
* The first component of vector to be rotated.
*
* G (input) DOUBLE PRECISION
* The second component of vector to be rotated.
*
* CS (output) DOUBLE PRECISION
* The cosine of the rotation.
*
* SN (output) DOUBLE PRECISION
* The sine of the rotation.
*
* R (output) DOUBLE PRECISION
* The nonzero component of the rotated vector.
*
* This version has a few statements commented out for thread safety
* (machine parameters are computed on each entry). 10 feb 03, SJH.
*
* =====================================================================
----
.CLARTGS, DLARTGS, SLARTGS, ZLARTGS
LAPACK Auxiliary Routines
[source,fortran]
----
SUBROUTINE DLARTGS( X, Y, SIGMA, CS, SN )
IMPLICIT NONE
*
* Brian Sutton
* Randolph-Macon College
* July 2010
*
* .. Scalar Arguments ..
DOUBLE PRECISION CS, SIGMA, SN, X, Y
* ..
*
* Purpose
* =======
*
* DLARTGS generates a plane rotation designed to introduce a bulge in
* Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD
* problem. X and Y are the top-row entries, and SIGMA is the shift.
* The computed CS and SN define a plane rotation satisfying
*
* [ CS SN ] . [ X^2 - SIGMA ] = [ R ],
* [ -SN CS ] [ X * Y ] [ 0 ]
*
* with R nonnegative. If X^2 - SIGMA and X * Y are 0, then the
* rotation is by PI/2.
*
* Arguments
* =========
*
* X (input) DOUBLE PRECISION
* The (1,1) entry of an upper bidiagonal matrix.
*
* Y (input) DOUBLE PRECISION
* The (1,2) entry of an upper bidiagonal matrix.
*
* SIGMA (input) DOUBLE PRECISION
* The shift.
*
* CS (output) DOUBLE PRECISION
* The cosine of the rotation.
*
* SN (output) DOUBLE PRECISION
* The sine of the rotation.
*
* ===================================================================
----