-
Notifications
You must be signed in to change notification settings - Fork 129
/
search.py
330 lines (258 loc) · 13.4 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/env python
import argparse
import cPickle
import traceback
import logging
import time
import sys
import os
import numpy
import codecs
from dialog_encdec import DialogEncoderDecoder
from numpy_compat import argpartition
from state import prototype_state
logger = logging.getLogger(__name__)
def sample_wrapper(sample_logic):
def sample_apply(*args, **kwargs):
sampler = args[0]
contexts = args[1]
verbose = kwargs.get('verbose', False)
if verbose:
logger.info("Starting {} : {} start sequences in total".format(sampler.name, len(contexts)))
context_samples = []
context_costs = []
# Start loop for each utterance
for context_id, context_utterances in enumerate(contexts):
if verbose:
logger.info("Searching for {}".format(context_utterances))
# Convert contextes into list of ids
joined_context = []
if len(context_utterances) == 0:
joined_context = [sampler.model.eos_sym]
else:
utterance_ids = sampler.model.words_to_indices(context_utterances.split())
# Add eos tokens
if len(utterance_ids) > 0:
if not utterance_ids[0] == sampler.model.eos_sym:
utterance_ids = [sampler.model.eos_sym] + utterance_ids
if not utterance_ids[-1] == sampler.model.eos_sym:
utterance_ids += [sampler.model.eos_sym]
else:
utterance_ids = [sampler.model.eos_sym]
joined_context += utterance_ids
samples, costs = sample_logic(sampler, joined_context, **kwargs)
# Convert back indices to list of words
converted_samples = map(lambda sample : sampler.model.indices_to_words(sample, exclude_end_sym=kwargs.get('n_turns', 1) == 1), samples)
# Join the list of words
converted_samples = map(' '.join, converted_samples)
if verbose:
for i in range(len(converted_samples)):
print "{}: {}".format(costs[i], converted_samples[i].encode('utf-8'))
context_samples.append(converted_samples)
context_costs.append(costs)
return context_samples, context_costs
return sample_apply
class Sampler(object):
"""
An abstract sampler class
"""
def __init__(self, model):
# Compile beam search
self.name = 'Sampler'
self.model = model
self.compiled = False
self.max_len = 160
def compile(self):
self.next_probs_predictor = self.model.build_next_probs_function()
self.compute_encoding = self.model.build_encoder_function()
if not self.model.reset_utterance_decoder_at_end_of_utterance:
self.compute_decoder_encoding = self.model.build_decoder_encoding()
self.compiled = True
def select_next_words(self, next_probs, step_num, how_many):
pass
def count_n_turns(self, utterance):
return len([w for w in utterance \
if w == self.model.eos_sym])
@sample_wrapper
def sample(self, *args, **kwargs):
context = args[0]
n_samples = kwargs.get('n_samples', 1)
ignore_unk = kwargs.get('ignore_unk', True)
min_length = kwargs.get('min_length', 1)
max_length = kwargs.get('max_length', 100)
beam_diversity = kwargs.get('beam_diversity', 1)
normalize_by_length = kwargs.get('normalize_by_length', True)
verbose = kwargs.get('verbose', False)
n_turns = kwargs.get('n_turns', 1)
if not self.compiled:
self.compile()
# Convert to matrix, each column is a context
# [[1,1,1],[4,4,4],[2,2,2]]
context = numpy.repeat(numpy.array(context, dtype='int32')[:,None],
n_samples, axis=1)
if context[-1, 0] != self.model.eos_sym:
raise Exception('Last token of context, when present,'
'should be the end of utterance: %d' % self.model.eos_sym)
# Generate the reversed context
reversed_context = self.model.reverse_utterances(context)
if self.model.direct_connection_between_encoders_and_decoder:
if self.model.bidirectional_utterance_encoder:
dialog_enc_size = self.model.sdim+self.model.qdim_encoder*2
else:
dialog_enc_size = self.model.sdim+self.model.qdim_encoder
else:
dialog_enc_size = self.model.sdim
prev_hs = numpy.zeros((n_samples, dialog_enc_size), dtype='float32')
prev_hd = numpy.zeros((n_samples, self.model.utterance_decoder.complete_hidden_state_size), dtype='float32')
if not self.model.reset_utterance_decoder_at_end_of_utterance:
assert self.model.bs >= context.shape[1]
enlarged_context = numpy.zeros((context.shape[0], self.model.bs), dtype='int32')
enlarged_context[:, 0:context.shape[1]] = context[:]
enlarged_reversed_context = numpy.zeros((context.shape[0], self.model.bs), dtype='int32')
enlarged_reversed_context[:, 0:context.shape[1]] = reversed_context[:]
ran_vector = self.model.rng.normal(size=(context.shape[0],n_samples,self.model.latent_gaussian_per_utterance_dim)).astype('float32')
zero_mask = numpy.zeros((context.shape[0], self.model.bs), dtype='float32')
ones_mask = numpy.zeros((context.shape[0], self.model.bs), dtype='float32')
# Computes new utterance decoder hidden states (including intermediate utterance encoder and dialogue encoder hidden states)
new_hd = self.compute_decoder_encoding(enlarged_context, enlarged_reversed_context, self.max_len, zero_mask, numpy.zeros((self.model.bs), dtype='float32'), ran_vector, ones_mask)
prev_hd[:] = new_hd[0][-1][0:context.shape[1], :]
fin_gen = []
fin_costs = []
gen = [[] for i in range(n_samples)]
costs = [0. for i in range(n_samples)]
beam_empty = False
# Compute random vector as additional input
ran_vectors = self.model.rng.normal(size=(n_samples,self.model.latent_gaussian_per_utterance_dim)).astype('float32')
for k in range(max_length):
if len(fin_gen) >= n_samples or beam_empty:
break
if verbose:
logger.info("{} : sampling step {}, beams alive {}".format(self.name, k, len(gen)))
# Here we aggregate the context and recompute the hidden state
# at both session level and query level.
# Stack only when we sampled something
if k > 0:
context = numpy.vstack([context, \
numpy.array(map(lambda g: g[-1], gen))]).astype('int32')
reversed_context = numpy.copy(context)
for idx in range(context.shape[1]):
eos_indices = numpy.where(context[:, idx] == self.model.eos_sym)[0]
prev_eos_index = -1
for eos_index in eos_indices:
reversed_context[(prev_eos_index+2):eos_index, idx] = (reversed_context[(prev_eos_index+2):eos_index, idx])[::-1]
prev_eos_index = eos_index
prev_words = context[-1, :]
# Recompute encoder states, hs and random variables
# only for those particular utterances that meet the end-of-utterance token
indx_update_hs = [num for num, prev_word in enumerate(prev_words)
if prev_word == self.model.eos_sym]
if len(indx_update_hs):
encoder_states = self.compute_encoding(context[:, indx_update_hs], reversed_context[:, indx_update_hs], self.max_len)
prev_hs[indx_update_hs] = encoder_states[1][-1]
ran_vectors[indx_update_hs,:] = self.model.rng.normal(size=(len(indx_update_hs),self.model.latent_gaussian_per_utterance_dim)).astype('float32')
# ... done
next_probs, new_hd = self.next_probs_predictor(prev_hs, prev_hd, prev_words, context, ran_vectors)
assert next_probs.shape[1] == self.model.idim
# Adjust log probs according to search restrictions
if ignore_unk:
next_probs[:, self.model.unk_sym] = 0
if k <= min_length:
next_probs[:, self.model.eos_sym] = 0
next_probs[:, self.model.eod_sym] = 0
# Update costs
next_costs = numpy.array(costs)[:, None] - numpy.log(next_probs)
# Select next words here
(beam_indx, word_indx), costs = self.select_next_words(next_costs, next_probs, k, n_samples)
# Update the stacks
new_gen = []
new_costs = []
new_sources = []
for num, (beam_ind, word_ind, cost) in enumerate(zip(beam_indx, word_indx, costs)):
if len(new_gen) > n_samples:
break
hypothesis = gen[beam_ind] + [word_ind]
# End of utterance has been detected
n_turns_hypothesis = self.count_n_turns(hypothesis)
if n_turns_hypothesis == n_turns:
if verbose:
logger.debug("adding utterance {} from beam {}".format(hypothesis, beam_ind))
# We finished sampling
fin_gen.append(hypothesis)
fin_costs.append(cost)
elif self.model.eod_sym in hypothesis: # End of dialogue detected
new_hypothesis = []
for wrd in hypothesis:
new_hypothesis += [wrd]
if wrd == self.model.eod_sym:
break
hypothesis = new_hypothesis
if verbose:
logger.debug("adding utterance {} from beam {}".format(hypothesis, beam_ind))
# We finished sampling
fin_gen.append(hypothesis)
fin_costs.append(cost)
else:
# Hypothesis recombination
# TODO: pick the one with lowest cost
has_similar = False
if self.hyp_rec > 0:
has_similar = len([g for g in new_gen if \
g[-self.hyp_rec:] == hypothesis[-self.hyp_rec:]]) != 0
if not has_similar:
new_sources.append(beam_ind)
new_gen.append(hypothesis)
new_costs.append(cost)
if verbose:
for gen in new_gen:
logger.debug("partial -> {}".format(' '.join(self.model.indices_to_words(gen))))
prev_hd = new_hd[new_sources]
prev_hs = prev_hs[new_sources]
ran_vectors = ran_vectors[new_sources,:]
context = context[:, new_sources]
reversed_context = reversed_context[:, new_sources]
gen = new_gen
costs = new_costs
beam_empty = len(gen) == 0
# If we have not sampled anything
# then force include stuff
if len(fin_gen) == 0:
fin_gen = gen
fin_costs = costs
# Normalize costs
if normalize_by_length:
fin_costs = [(fin_costs[num]/len(fin_gen[num])) \
for num in range(len(fin_gen))]
fin_gen = numpy.array(fin_gen)[numpy.argsort(fin_costs)]
fin_costs = numpy.array(sorted(fin_costs))
return fin_gen[:n_samples], fin_costs[:n_samples]
class RandomSampler(Sampler):
def __init__(self, model):
Sampler.__init__(self, model)
self.name = 'RandomSampler'
self.hyp_rec = 0
def select_next_words(self, next_costs, next_probs, step_num, how_many):
# Choice is complaining
next_probs = next_probs.astype("float64")
word_indx = numpy.array([self.model.rng.choice(self.model.idim, p = x/numpy.sum(x))
for x in next_probs], dtype='int32')
beam_indx = range(next_probs.shape[0])
args = numpy.ravel_multi_index(numpy.array([beam_indx, word_indx]), next_costs.shape)
return (beam_indx, word_indx), next_costs.flatten()[args]
class BeamSampler(Sampler):
def __init__(self, model):
Sampler.__init__(self, model)
self.name = 'BeamSampler'
self.hyp_rec = 3
def select_next_words(self, next_costs, next_probs, step_num, how_many):
# Pick only on the first line (for the beginning of sampling)
# This will avoid duplicate <q> token.
if step_num == 0:
flat_next_costs = next_costs[:1, :].flatten()
else:
# Set the next cost to infinite for finished utterances (they will be replaced)
# by other utterances in the beam
flat_next_costs = next_costs.flatten()
voc_size = next_costs.shape[1]
args = numpy.argpartition(flat_next_costs, how_many)[:how_many]
args = args[numpy.argsort(flat_next_costs[args])]
return numpy.unravel_index(args, next_costs.shape), flat_next_costs[args]