forked from labsyspharm/mcmicro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.nf
190 lines (163 loc) · 7.2 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env nextflow
if( !(nextflow.version >= '22.04.3') ) {
println "mcmicro requires Nextflow version 22.04.3 or greater"
println "Run the following command to update: nextflow self-update"
exit 1
}
nextflow.enable.dsl=2
import mcmicro.*
import org.yaml.snakeyaml.Yaml
import org.yaml.snakeyaml.DumperOptions
// Expecting --in parameter
if( !params.containsKey('in') )
error "Please specify the project directory with --in"
// Parse MCMICRO parameters (mcp)
mcp = Opts.parseParams(
params,
"$projectDir/config/schema.yml",
"$projectDir/config/defaults.yml"
)
// Separate out workflow parameters (wfp) and module specs to simplify code
wfp = mcp.workflow
// Identify relevant precomputed intermediates
// The actual paths to intermediate files are given by
// pre.collect{ "${params.in}/$it" }
pre = Flow.precomputed(wfp)
// Check that deprecated locations are empty
Channel.fromPath( "${params.in}/illumination_profiles/*" )
.subscribe{ it ->
error "illumination_profiles/ is deprecated; please use illumination/ instead"
}
// Identify marker information
chMrk = Channel.fromPath( "${params.in}/markers.csv", checkIfExists: true )
// Helper functions for finding raw images and precomputed intermediates
findFiles0 = { key, pattern -> pre[key] ?
Channel.fromPath("${params.in}/$key/$pattern") : Channel.empty()
}
findFiles = { key, pattern, ife -> pre[key] ?
Channel.fromPath("${params.in}/$key/$pattern").ifEmpty(ife) : Channel.empty()
}
// Some image formats store multiple fields of view in a single file. Other
// formats store each field separately, typically in .tif files, with a separate
// index file to tie them together. We will look for the index files from
// multiple-file formats in a first, separate pass in order to avoid finding the
// individual .tif files instead. If no multi-file formats are detected, then we
// look for the single-file formats. Also, for multi-file formats we need to
// stage the parent directory and not just the index file.
(formatType, formatPattern) =
file("${params.in}/raw/**${wfp['multi-formats']}") ?
["multi", wfp['multi-formats']] : ["single", wfp['single-formats']]
rawFiles = findFiles('raw', "**${formatPattern}",
{error "No images found in ${params.in}/raw"})
// Here we assemble tuples of 1) path to stage for each raw image (might be a
// directory) and 2) relative path to the main file for each image. Processes
// must input the first as a path and the second as a val to avoid incorrect or
// redundant file staging. They must also only use the second (relative) path to
// construct pathnames for scripts etc. mcmicro.Util.escapePathForShell must be
// used when interpolating these paths into script strings, as we are bypassing
// the normal way that paths are passed to channels which handles this escaping
// automatically.
raw = rawFiles
.map{ tuple(formatType == "single" ? it : it.parent, it) }
.map{ toStage, relPath -> tuple(toStage, toStage.parent.relativize(relPath).toString()) }
// Find precomputed intermediates
pre_dfp = findFiles0('illumination', "*-dfp.tif")
pre_ffp = findFiles0('illumination', "*-ffp.tif")
pre_img = findFiles('registration', "*.{ome.tiff,ome.tif,tif,tiff,btf}",
{error "No pre-stitched image in ${params.in}/registration"})
pre_bsub = findFiles('background', "*.ome.tif",
{error "No background subtracted image in ${params.in}/background"})
pre_bsubm = findFiles('background', "*.csv",
{error "No background subtracted markers file in ${params.in}/background"})
pre_cores = findFiles('dearray', "*.tif",
{error "No TMA cores in ${params.in}/dearray"})
pre_masks = findFiles('dearray', "masks/*.tif",
{error "No TMA masks in ${params.in}/dearray/masks"})
pre_pmap = findFiles('probability-maps', "*/*-pmap.tif",
{error "No probability maps found in ${params.in}/probability-maps"})
.map{ f -> tuple(f.getParent().getName(), f) }
.filter{ wfp['segmentation'].contains(it[0]) }
pre_seg = findFiles('segmentation', "**.tif",
{error "No segmentation masks in ${params.in}/segmentation"})
.map{ f -> tuple(f.getParent().getName(), f) }.groupTuple()
pre_qty = findFiles('quantification', "*.csv",
{error "No quantification tables in ${params.in}/quantification"})
// Import individual modules
include {illumination} from "$projectDir/modules/illumination"
include {registration} from "$projectDir/modules/registration"
include {dearray} from "$projectDir/modules/dearray"
include {segmentation} from "$projectDir/modules/segmentation"
include {quantification} from "$projectDir/modules/quantification"
include {downstream} from "$projectDir/modules/downstream"
include {viz} from "$projectDir/modules/viz"
include {background} from "$projectDir/modules/background"
// Define the primary mcmicro workflow
workflow {
illumination(wfp, mcp.modules['illumination'], raw)
registration(mcp, raw,
illumination.out.ffp.mix( pre_ffp ),
illumination.out.dfp.mix( pre_dfp ))
img = registration.out.mix(pre_img)
// Should background subtraction be applied?
img = img.
branch{
nobs: !wfp.background
bs: wfp.background
}
chMrk = chMrk.
branch{
nobs: !wfp.background
bs: wfp.background
}
// Apply background if specified
background(mcp, img.bs, chMrk.bs)
// Merge against precomputed intermediates
bsub_image = background.out.image.mix(pre_bsub)
bsub_marker = background.out.marker.mix(pre_bsubm)
// Reconcile non-background subtracted and background
// subtracted images for downstream processing
img = img.nobs.mix(bsub_image)
// Reconcile the marker file to the background subtracted csv
chMrk = chMrk.nobs.mix(bsub_marker)
// Are we working with a TMA or a whole-slide image?
img = img
.branch {
wsi: !wfp.tma
tma: wfp.tma
}
// Apply dearray to TMAs only
dearray(mcp, img.tma)
// Merge against precomputed intermediates
tmacores = dearray.out.cores.mix(pre_cores)
tmamasks = dearray.out.masks.mix(pre_masks)
// Reconcile WSI and TMA processing for downstream segmentation
allimg = img.wsi.mix(tmacores)
segmentation(mcp, allimg, tmamasks, pre_pmap)
// Merge segmentation masks against precomputed ones and append markers.csv
segMsk = segmentation.out.mix(pre_seg)
quantification(mcp, allimg, segMsk, chMrk)
// Spatial feature tables -> cell state calling
sft = quantification.out.mix(pre_qty)
downstream(mcp, sft)
// Vizualization
viz(mcp, allimg, chMrk)
}
// Write out parameters used
path_qc = "${params.in}/qc"
workflow.onComplete {
// Create a provenance directory
file(path_qc).mkdirs()
// Write out MCMICRO parameters
DumperOptions style = new DumperOptions();
style.setPrettyFlow(true);
style.setDefaultFlowStyle(DumperOptions.FlowStyle.BLOCK);
file("${params.in}/qc/params.yml").withWriter{ out ->
new Yaml(style).dump(mcp, out)
}
// Store additional metadata
file("${path_qc}/metadata.yml").withWriter{ out ->
out.println "githubTag: $workflow.revision";
out.println "githubCommit: $workflow.commitId";
out.println "roadie: $params.roadie";
}
}