-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlmm_mass_univ_aic.py
132 lines (118 loc) · 4.53 KB
/
lmm_mass_univ_aic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import mne
from mne.time_frequency import read_tfrs
import statsmodels.formula.api as smf
from statsmodels.regression.mixed_linear_model import MixedLM
import argparse
import pandas as pd
from os.path import isdir
import re
import numpy as np
import matplotlib.pyplot as plt
from mne.stats.cluster_level import _find_clusters
import pickle
plt.ion()
import warnings
warnings.filterwarnings("ignore")
import seaborn as sns
def graph_comps(dur_pairs, aics, veclen, freq_n, time_n):
for dp in dur_pairs:
aic_pairs = np.zeros((2, veclen))
for pair_idx in range(2):
aic_pairs[pair_idx,] = aics[dp[pair_idx]]
model_map = np.zeros(veclen)
winner_vecs = np.argsort(aic_pairs, axis=0)[0,]
model_map[winner_vecs>0] = 1
for idx in list(np.where(model_map)[0]):
model_map[idx] = 1 - np.exp((aic_pairs[1,idx] - aic_pairs[0,idx]) / 2)
model_map = np.reshape(model_map, (freq_n, time_n),
order="F")
plt.figure()
sns.heatmap(model_map)
plt.gca().invert_yaxis()
plt.title(dp[1])
def mass_uv_lmm(data, endog, exog, groups):
exog_n = exog.shape[1]
dat = data.reshape(len(data), data.shape[1]*data.shape[2])
fits = []
for pnt_idx in range(dat.shape[1]):
print("{} of {}".format(pnt_idx, dat.shape[1]))
endog = dat[:, pnt_idx]
this_mod = MixedLM(endog, exog, groups)
try:
fits.append(this_mod.fit(reml=False))
except:
print("\nCoudn't fit model.\n")
fits.append(None)
return fits
if isdir("/home/jev"):
root_dir = "/home/jev/hdd/sfb/"
elif isdir("/home/jeff"):
root_dir = "/home/jeff/hdd/jeff/sfb/"
elif isdir("/home/jeffhanna/"):
root_dir = "/scratch/jeffhanna/sfb/"
proc_dir = root_dir+"proc/"
n_jobs = 8
chan = "central"
baseline = "zscore"
osc = "SO"
use_group = "nogroup"
tfr = read_tfrs("{}grand_central_{}-tfr.h5".format(proc_dir, baseline))[0]
tfr = tfr["OscType=='{}'".format(osc)]
tfr = tfr["PrePost=='Post'"]
data = np.swapaxes(tfr.data[:,0],1,2)
veclen = data.shape[-2]*data.shape[-1]
if baseline == "mean":
data *= 1e+12
df = tfr.metadata.copy()
df["Brain"] = np.zeros(len(df),dtype=np.float64)
try:
with open("{}{}_{}_{}_{}_aics.pickle".format(proc_dir, chan, baseline, osc,
use_group), "rb") as f:
aics = pickle.load(f)
except:
models = {"Null":"Brain ~ 1",
"Stim":"Brain ~ Stim",
"StimType":"Brain ~ StimType",
"Duration_Stim":"Brain ~ Stim*Dur",
"Duration_StimType":"Brain ~ StimType*Dur",
"Sync_Stim":"Brain ~ Stim*Dur*Sync",
"Sync_StimType":"Brain ~ StimType*Dur*Sync",
"Sync_Stim_NoDur":"Brain ~ Stim*Sync",
"Sync_StimType_NoDur":"Brain ~ StimType*Sync"}
aics = {k:np.zeros(data.shape[-2]*data.shape[-1]) for k in models.keys()}
for mod_name, mod_form in models.items():
groups = df["Subj"] if use_group == "group" else pd.Series(np.zeros(len(df),dtype=int))
md = smf.mixedlm(mod_form, df, groups=groups)
endog, exog, groups, exog_names = md.endog, md.exog, md.groups, md.exog_names
print(exog_names)
#main result
fits = mass_uv_lmm(data, endog, exog, groups)
for fit_idx, fit in enumerate(fits):
aics[mod_name][fit_idx] = fit.aic
del fits
with open("{}{}_{}_{}_{}_aics.pickle".format(proc_dir, chan, baseline, osc,
use_group), "wb") as f:
pickle.dump(aics, f)
aics_arr = np.empty((len(aics), veclen))
for v_idx, v in enumerate(aics.values()):
aics_arr[v_idx,] = v
winner_vecs = np.argsort(aics_arr, axis=0)
fig, axes = plt.subplots(1,2, figsize=(38.4,21.6))
#axes = [ax for axe in axes for ax in axe]
for ax_idx, ax in enumerate(axes):
winner_map = np.reshape(winner_vecs[ax_idx,], (data.shape[2], data.shape[1]),
order="F")
sns.heatmap(winner_map, ax=ax, cmap="Set1")
ax.invert_yaxis()
# assess effect of duration
dur_pairs = [("Sync_StimType_NoDur", "Sync_StimType"),
("StimType", "Duration_StimType")]
graph_comps(dur_pairs, aics, veclen, data.shape[-1], data.shape[-2])
# assess effect of sync
sync_pairs = [("StimType", "Sync_StimType_NoDur"),
("Duration_StimType", "Sync_StimType")]
graph_comps(sync_pairs, aics, veclen, data.shape[-1], data.shape[-2])
# assess effect of stimtype
sync_pairs = [("Stim", "StimType"),
("Duration_Stim", "Duration_StimType")]
graph_comps(sync_pairs, aics, veclen, data.shape[-1], data.shape[-2])