-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircular_hist.py
96 lines (77 loc) · 3.33 KB
/
circular_hist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import matplotlib.pyplot as plt
import numpy as np
def circular_hist(ax, x, bins=16, density=True, offset=0, gaps=True, color="blue",
area_fill=True, alpha=1, dot_size=2):
"""
Produce a circular histogram of angles on ax.
Parameters
----------
ax : matplotlib.axes._subplots.PolarAxesSubplot
axis instance created with subplot_kw=dict(projection='polar').
x : array
Angles to plot, expected in units of radians.
bins : int, optional
Defines the number of equal-width bins in the range. The default is 16.
density : bool, optional
If True plot frequency proportional to area. If False plot frequency
proportional to radius. The default is True.
offset : float, optional
Sets the offset for the location of the 0 direction in units of
radians. The default is 0.
gaps : bool, optional
Whether to allow gaps between bins. When gaps = False the bins are
forced to partition the entire [-pi, pi] range. The default is True.
Returns
-------
n : array or list of arrays
The number of values in each bin.
bins : array
The edges of the bins.
patches : `.BarContainer` or list of a single `.Polygon`
Container of individual artists used to create the histogram
or list of such containers if there are multiple input datasets.
"""
# Wrap angles to [-pi, pi)
x = (x+np.pi) % (2*np.pi) - np.pi
# Force bins to partition entire circle
if not gaps:
bins = np.linspace(-np.pi, np.pi, num=bins+1)
# Bin data and record counts
n, bins = np.histogram(x, bins=bins)
# Compute width of each bin
widths = np.diff(bins)
# By default plot frequency proportional to area
if density:
# Area to assign each bin
area = n / x.size
# Calculate corresponding bin radius
radius = (area/np.pi) ** .5
# Otherwise plot frequency proportional to radius
else:
radius = n
# Plot data on ax
patches = ax.bar(bins[:-1], radius, zorder=1, align='edge', width=widths,
edgecolor='C0', fill=area_fill, linewidth=1, alpha=alpha,
color=color)
# Set the direction of the zero angle
ax.set_theta_offset(offset)
# Remove ylabels for area plots (they are mostly obstructive)
if density:
ax.set_yticks([])
return n, bins, patches, radius.max()
def circ_hist_norm(ax, x, points=None, vecs=None, bins=16, density=True, offset=0,
gaps=True, color="blue", area_fill=True, alpha=1,
points_col=None, dot_size=2):
n, bins, patches, r_max = circular_hist(ax, x, bins=bins, density=density,
offset=offset, gaps=gaps, color=color,
area_fill=area_fill, alpha=alpha,
dot_size=dot_size)
if points is not None:
full_points = np.array([(x, r_max) for x in np.nditer(points)])
ax.scatter(full_points[:,0], full_points[:,1], s=dot_size,
facecolors="None", edgecolors=points_col, linewidths=3.5)
if vecs is not None:
for vec in vecs:
r = np.arange(0, r_max*vec[0][1], 0.01)
theta = np.ones_like(r)*vec[0][0]
ax.plot(theta, r, **vec[1])