-
Notifications
You must be signed in to change notification settings - Fork 78
/
ind_defs.ml
440 lines (420 loc) · 19.9 KB
/
ind_defs.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
(* ========================================================================= *)
(* Mutually inductively defined relations. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "theorems.ml";;
(* ------------------------------------------------------------------------- *)
(* Strip off exactly n arguments from combination. *)
(* ------------------------------------------------------------------------- *)
let strip_ncomb =
let rec strip(n,tm,acc) =
if n < 1 then tm,acc else
let l,r = dest_comb tm in
strip(n - 1,l,r::acc) in
fun n tm -> strip(n,tm,[]);;
(* ------------------------------------------------------------------------- *)
(* Expand lambda-term function definition with its arguments. *)
(* ------------------------------------------------------------------------- *)
let RIGHT_BETAS =
rev_itlist (fun a -> CONV_RULE (RAND_CONV BETA_CONV) o C AP_THM a);;
(* ------------------------------------------------------------------------- *)
(* A, x = t |- P[x] *)
(* ------------------ EXISTS_EQUATION *)
(* A |- ?x. P[x] *)
(* ------------------------------------------------------------------------- *)
let EXISTS_EQUATION =
let pth = prove
(`!P t. (!x:A. (x = t) ==> P x) ==> (?) P`,
REWRITE_TAC[EXISTS_DEF] THEN BETA_TAC THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `t:A` THEN FIRST_ASSUM MATCH_MP_TAC THEN
REFL_TAC) in
fun tm th ->
let l,r = dest_eq tm in
let P = mk_abs(l,concl th) in
let th1 = BETA_CONV(mk_comb(P,l)) in
let th2 = ISPECL [P; r] pth in
let th3 = EQ_MP (SYM th1) th in
let th4 = GEN l (DISCH tm th3) in
MP th2 th4;;
(* ========================================================================= *)
(* Part 1: The main part of the inductive definitions package. *)
(* This proves that a certain definition yields the requires theorems. *)
(* ========================================================================= *)
let derive_nonschematic_inductive_relations =
let getconcl tm =
let bod = repeat (snd o dest_forall) tm in
try snd(dest_imp bod) with Failure _ -> bod
and CONJ_ACI_RULE = AC CONJ_ACI
and SIMPLE_DISJ_PAIR th =
let l,r = dest_disj(hd(hyp th)) in
PROVE_HYP (DISJ1 (ASSUME l) r) th,PROVE_HYP (DISJ2 l (ASSUME r)) th
and HALF_BETA_EXPAND args th = GENL args (RIGHT_BETAS args th) in
let AND_IMPS_CONV tm =
let ths = CONJUNCTS(ASSUME tm) in
let avs = fst(strip_forall(concl(hd ths))) in
let thl = map (DISCH tm o UNDISCH o SPEC_ALL) ths in
let th1 = end_itlist SIMPLE_DISJ_CASES thl in
let tm1 = hd(hyp th1) in
let th2 = GENL avs (DISCH tm1 (UNDISCH th1)) in
let tm2 = concl th2 in
let th3 = DISCH tm2 (UNDISCH (SPEC_ALL (ASSUME tm2))) in
let thts,tht = nsplit SIMPLE_DISJ_PAIR (tl ths) th3 in
let proc_fn th =
let t = hd(hyp th) in GENL avs (DISCH t (UNDISCH th)) in
let th4 = itlist (CONJ o proc_fn) thts (proc_fn tht) in
IMP_ANTISYM_RULE (DISCH_ALL th2) (DISCH_ALL th4) in
let t_tm = `T` in
let calculate_simp_sequence =
let rec getequs(avs,plis) =
if plis = [] then [] else
let h::t = plis in
let r = snd h in
if mem r avs then
h::(getequs(avs,filter ((<>) r o snd) t))
else
getequs(avs,t) in
fun avs plis ->
let oks = getequs(avs,plis) in
oks,subtract plis oks
and FORALL_IMPS_CONV tm =
let avs,bod = strip_forall tm in
let th1 = DISCH tm (UNDISCH(SPEC_ALL(ASSUME tm))) in
let th2 = itlist SIMPLE_CHOOSE avs th1 in
let tm2 = hd(hyp th2) in
let th3 = DISCH tm2 (UNDISCH th2) in
let th4 = ASSUME (concl th3) in
let ant = lhand bod in
let th5 = itlist SIMPLE_EXISTS avs (ASSUME ant) in
let th6 = GENL avs (DISCH ant (MP th4 th5)) in
IMP_ANTISYM_RULE (DISCH_ALL th3) (DISCH_ALL th6) in
let canonicalize_clause cls args =
let avs,bimp = strip_forall cls in
let ant,con = try dest_imp bimp with Failure _ -> t_tm,bimp in
let rel,xargs = strip_comb con in
let plis = zip args xargs in
let yes,no = calculate_simp_sequence avs plis in
let nvs = filter (not o C mem (map snd yes)) avs in
let eth =
if is_imp bimp then
let atm = itlist (curry mk_conj o mk_eq) (yes@no) ant in
let ths,tth = nsplit CONJ_PAIR plis (ASSUME atm) in
let thl = map (fun t -> find (fun th -> lhs(concl th) = t) ths) args in
let th0 = MP (SPECL avs (ASSUME cls)) tth in
let th1 = rev_itlist (C (curry MK_COMB)) thl (REFL rel) in
let th2 = EQ_MP (SYM th1) th0 in
let th3 = INST yes (DISCH atm th2) in
let tm4 = funpow (length yes) rand (lhand(concl th3)) in
let th4 = itlist (CONJ o REFL o fst) yes (ASSUME tm4) in
let th5 = GENL args (GENL nvs (DISCH tm4 (MP th3 th4))) in
let th6 = SPECL nvs (SPECL (map snd plis) (ASSUME (concl th5))) in
let th7 = itlist (CONJ o REFL o snd) no (ASSUME ant) in
let th8 = GENL avs (DISCH ant (MP th6 th7)) in
IMP_ANTISYM_RULE (DISCH_ALL th5) (DISCH_ALL th8)
else
let atm = list_mk_conj(map mk_eq (yes@no)) in
let ths = CONJUNCTS (ASSUME atm) in
let thl = map (fun t -> find (fun th -> lhs(concl th) = t) ths) args in
let th0 = SPECL avs (ASSUME cls) in
let th1 = rev_itlist (C (curry MK_COMB)) thl (REFL rel) in
let th2 = EQ_MP (SYM th1) th0 in
let th3 = INST yes (DISCH atm th2) in
let tm4 = funpow (length yes) rand (lhand(concl th3)) in
let th4 = itlist (CONJ o REFL o fst) yes (ASSUME tm4) in
let th5 = GENL args (GENL nvs (DISCH tm4 (MP th3 th4))) in
let th6 = SPECL nvs (SPECL (map snd plis) (ASSUME (concl th5))) in
let th7 = end_itlist CONJ (map (REFL o snd) no) in
let th8 = GENL avs (MP th6 th7) in
IMP_ANTISYM_RULE (DISCH_ALL th5) (DISCH_ALL th8) in
let ftm = funpow (length args) (body o rand) (rand(concl eth)) in
TRANS eth (itlist MK_FORALL args (FORALL_IMPS_CONV ftm)) in
let canonicalize_clauses clauses =
let concls = map getconcl clauses in
let uncs = map strip_comb concls in
let rels = itlist (insert o fst) uncs [] in
let xargs = map (C assoc uncs) rels in
let closed = list_mk_conj clauses in
let avoids = variables closed in
let flargs =
make_args "a" avoids (map type_of (end_itlist (@) xargs)) in
let zargs = zip rels (shareout xargs flargs) in
let cargs = map (fun (r,a) -> assoc r zargs) uncs in
let cthms = map2 canonicalize_clause clauses cargs in
let pclauses = map (rand o concl) cthms in
let collectclauses tm =
mapfilter (fun t -> if fst t = tm then snd t else fail())
(zip (map fst uncs) pclauses) in
let clausell = map collectclauses rels in
let cclausel = map list_mk_conj clausell in
let cclauses = list_mk_conj cclausel
and oclauses = list_mk_conj pclauses in
let eth = CONJ_ACI_RULE(mk_eq(oclauses,cclauses)) in
let pth = TRANS (end_itlist MK_CONJ cthms) eth in
TRANS pth (end_itlist MK_CONJ (map AND_IMPS_CONV cclausel))
and derive_canon_inductive_relations clauses =
let closed = list_mk_conj clauses in
let clauses = conjuncts closed in
let vargs,bodies = unzip(map strip_forall clauses) in
let ants,concs = unzip(map dest_imp bodies) in
let rels = map (repeat rator) concs in
let avoids = variables closed in
let rels' = variants avoids rels in
let crels = zip rels' rels in
let prime_fn = subst crels in
let closed' = prime_fn closed in
let mk_def arg con =
mk_eq(repeat rator con,
list_mk_abs(arg,list_mk_forall(rels',mk_imp(closed',prime_fn con)))) in
let deftms = map2 mk_def vargs concs in
let defthms = map2 HALF_BETA_EXPAND vargs (map ASSUME deftms) in
let mk_ind args th =
let th1 = fst(EQ_IMP_RULE(SPEC_ALL th)) in
let ant = lhand(concl th1) in
let th2 = SPECL rels' (UNDISCH th1) in
GENL args (DISCH ant (UNDISCH th2)) in
let indthms = map2 mk_ind vargs defthms in
let indthmr = end_itlist CONJ indthms in
let indthm = GENL rels' (DISCH closed' indthmr) in
let mconcs = map2 (fun a t -> list_mk_forall(a,mk_imp(t,prime_fn t)))
vargs ants in
let monotm = mk_imp(concl indthmr,list_mk_conj mconcs) in
let monothm = ASSUME(list_mk_forall(rels,list_mk_forall(rels',monotm))) in
let closthm = ASSUME closed' in
let monothms = CONJUNCTS
(MP (SPEC_ALL monothm) (MP (SPECL rels' indthm) closthm)) in
let closthms = CONJUNCTS closthm in
let prove_rule mth (cth,dth) =
let avs,bod = strip_forall(concl mth) in
let th1 = IMP_TRANS (SPECL avs mth) (SPECL avs cth) in
let th2 = GENL rels' (DISCH closed' (UNDISCH th1)) in
let th3 = EQ_MP (SYM (SPECL avs dth)) th2 in
GENL avs (DISCH (lhand bod) th3) in
let rulethms = map2 prove_rule monothms (zip closthms defthms) in
let rulethm = end_itlist CONJ rulethms in
let dtms = map2 (curry list_mk_abs) vargs ants in
let double_fn = subst (zip dtms rels) in
let mk_unbetas tm dtm =
let avs,bod = strip_forall tm in
let il,r = dest_comb bod in
let i,l = dest_comb il in
let bth = RIGHT_BETAS avs (REFL dtm) in
let munb = AP_THM (AP_TERM i bth) r in
let iunb = AP_TERM (mk_comb(i,double_fn l)) bth in
let junb = AP_TERM (mk_comb(i,r)) bth in
let quantify = itlist MK_FORALL avs in
(quantify munb,(quantify iunb,quantify junb)) in
let unths = map2 mk_unbetas clauses dtms in
let irthm = EQ_MP (SYM(end_itlist MK_CONJ (map fst unths))) rulethm in
let mrthm = MP (SPECL rels (SPECL dtms monothm)) irthm in
let imrth = EQ_MP (SYM(end_itlist MK_CONJ (map (fst o snd) unths))) mrthm in
let ifthm = MP (SPECL dtms indthm) imrth in
let fthm = EQ_MP (end_itlist MK_CONJ (map (snd o snd) unths)) ifthm in
let mk_case th1 th2 =
let avs = fst(strip_forall(concl th1)) in
GENL avs (IMP_ANTISYM_RULE (SPEC_ALL th1) (SPEC_ALL th2)) in
let casethm = end_itlist CONJ
(map2 mk_case (CONJUNCTS fthm) (CONJUNCTS rulethm)) in
CONJ rulethm (CONJ indthm casethm) in
fun tm ->
let clauses = conjuncts tm in
let canonthm = canonicalize_clauses clauses in
let canonthm' = SYM canonthm in
let pclosed = rand(concl canonthm) in
let pclauses = conjuncts pclosed in
let rawthm = derive_canon_inductive_relations pclauses in
let rulethm,otherthms = CONJ_PAIR rawthm in
let indthm,casethm = CONJ_PAIR otherthms in
let rulethm' = EQ_MP canonthm' rulethm
and indthm' = CONV_RULE (ONCE_DEPTH_CONV (REWR_CONV canonthm')) indthm in
CONJ rulethm' (CONJ indthm' casethm);;
(* ========================================================================= *)
(* Part 2: Tactic-integrated tools for proving monotonicity automatically. *)
(* ========================================================================= *)
let monotonicity_theorems = ref
[MONO_AND; MONO_OR; MONO_IMP; MONO_NOT; MONO_EXISTS; MONO_FORALL];;
(* ------------------------------------------------------------------------- *)
(* Attempt to backchain through the monotonicity theorems. *)
(* ------------------------------------------------------------------------- *)
let MONO_TAC =
let imp = `(==>)` and IMP_REFL = ITAUT `!p. p ==> p` in
let BACKCHAIN_TAC th =
let match_fn = PART_MATCH (snd o dest_imp) th in
fun (asl,w) ->
let th1 = match_fn w in
let ant,con = dest_imp(concl th1) in
null_meta,[asl,ant],fun i [t] -> MATCH_MP (INSTANTIATE i th1) t
and MONO_ABS_TAC (asl,w) =
let ant,con = dest_imp w in
let vars = snd(strip_comb con) in
let rnum = length vars - 1 in
let hd1,args1 = strip_ncomb rnum ant
and hd2,args2 = strip_ncomb rnum con in
let th1 = rev_itlist (C AP_THM) args1 (BETA_CONV hd1)
and th2 = rev_itlist (C AP_THM) args1 (BETA_CONV hd2) in
let th3 = MK_COMB(AP_TERM imp th1,th2) in
CONV_TAC(REWR_CONV th3) (asl,w)
and APPLY_MONOTAC tacs (asl,w) =
let a,c = dest_imp w in
if aconv a c then ACCEPT_TAC (SPEC a IMP_REFL) (asl,w) else
let cn = try fst(dest_const(repeat rator c)) with Failure _ -> "" in
tryfind (fun (k,t) -> if k = cn then t (asl,w) else fail()) tacs in
fun gl ->
let tacs = itlist
(fun th l -> let ft = repeat rator (funpow 2 rand (concl th)) in
let c = try fst(dest_const ft) with Failure _ -> "" in
(c,BACKCHAIN_TAC th THEN REPEAT CONJ_TAC)::l)
(!monotonicity_theorems) ["",MONO_ABS_TAC] in
let MONO_STEP_TAC = REPEAT GEN_TAC THEN APPLY_MONOTAC tacs in
(REPEAT MONO_STEP_TAC THEN ASM_REWRITE_TAC[]) gl;;
(* ------------------------------------------------------------------------- *)
(* Attempt to dispose of the non-equational assumption(s) of a theorem. *)
(* ------------------------------------------------------------------------- *)
let prove_monotonicity_hyps =
let tac = REPEAT GEN_TAC THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
REPEAT CONJ_TAC THEN MONO_TAC in
let prove_mth t = prove(t,tac) in
fun th ->
let mths = mapfilter prove_mth (filter (not o is_eq) (hyp th)) in
itlist PROVE_HYP mths th;;
(* ========================================================================= *)
(* Part 3: The final user wrapper, with schematic variables added. *)
(* ========================================================================= *)
let the_inductive_definitions = ref [];;
let prove_inductive_relations_exist,new_inductive_definition =
let rec pare_comb qvs tm =
if intersect (frees tm) qvs = [] && forall is_var (snd(strip_comb tm))
then tm
else pare_comb qvs (rator tm) in
let generalize_schematic_variables gflag vs =
let generalize_def tm th =
let l,r = dest_eq tm in
let lname,lty = dest_var l in
let l' = mk_var(lname,itlist (mk_fun_ty o type_of) vs lty) in
let r' = list_mk_abs(vs,r) in
let tm' = mk_eq(l',r') in
let th0 = RIGHT_BETAS vs (ASSUME tm') in
let th1 = INST [lhs(concl th0),l] (DISCH tm th) in
MP th1 th0 in
fun th ->
let defs,others = partition is_eq (hyp th) in
let th1 = itlist generalize_def defs th in
if gflag then
let others' = map (fun t -> let fvs = frees t in
SPECL fvs (ASSUME (list_mk_forall(fvs,t))))
others in
GENL vs (itlist PROVE_HYP others' th1)
else th1
and derive_existence th =
let defs = filter is_eq (hyp th) in
itlist EXISTS_EQUATION defs th
and make_definitions th =
let defs = filter is_eq (hyp th) in
let dths = map new_definition defs in
let insts = zip (map (lhs o concl) dths) (map lhs defs) in
rev_itlist (C MP) dths (INST insts (itlist DISCH defs th))
and unschematize_clauses clauses =
let schem = map (fun cls -> let avs,bod = strip_forall cls in
pare_comb avs (try snd(dest_imp bod) with Failure _ -> bod))
clauses in
let schems = setify schem in
if is_var(hd schem) then (clauses,[]) else
if not (length(setify (map (snd o strip_comb) schems)) = 1)
then failwith "Schematic variables not used consistently" else
let avoids = variables (list_mk_conj clauses) in
let hack_fn tm = mk_var(fst(dest_var(repeat rator tm)),type_of tm) in
let grels = variants avoids (map hack_fn schems) in
let crels = zip grels schems in
let clauses' = map (subst crels) clauses in
clauses',snd(strip_comb(hd schems)) in
let find_redefinition tm (rth,ith,cth as trip) =
if aconv tm (concl rth) then trip else failwith "find_redefinition" in
let prove_inductive_properties tm =
let clauses = conjuncts tm in
let clauses',fvs = unschematize_clauses clauses in
let th = derive_nonschematic_inductive_relations (list_mk_conj clauses') in
fvs,prove_monotonicity_hyps th in
let prove_inductive_relations_exist tm =
let fvs,th1 = prove_inductive_properties tm in
let th2 = generalize_schematic_variables true fvs th1 in
derive_existence th2
and new_inductive_definition tm =
try let th = tryfind (find_redefinition tm) (!the_inductive_definitions) in
warn true "Benign redefinition of inductive predicate"; th
with Failure _ ->
let fvs,th1 = prove_inductive_properties tm in
let th2 = generalize_schematic_variables true fvs th1 in
let th3 = make_definitions th2 in
let avs = fst(strip_forall(concl th3)) in
let r,ic = CONJ_PAIR(SPECL avs th3) in
let i,c = CONJ_PAIR ic in
let thtr = GENL avs r,GENL avs i,GENL avs c in
the_inductive_definitions := thtr::(!the_inductive_definitions);
thtr in
prove_inductive_relations_exist,new_inductive_definition;;
(* ------------------------------------------------------------------------- *)
(* Derivation of "strong induction". *)
(* ------------------------------------------------------------------------- *)
let derive_strong_induction =
let dest_ibod tm =
let avs,ibod = strip_forall tm in
let n = length avs in
let prator = funpow n rator in
let ant,con = dest_imp ibod in
n,(prator ant,prator con) in
let rec prove_triv tm =
if is_conj tm then CONJ (prove_triv(lhand tm)) (prove_triv(rand tm)) else
let avs,bod = strip_forall tm in
let a,c = dest_imp bod in
let ths = CONJUNCTS(ASSUME a) in
let th = find (aconv c o concl) ths in
GENL avs (DISCH a th) in
let rec weaken_triv th =
if is_conj(concl th)
then CONJ (weaken_triv(CONJUNCT1 th)) (weaken_triv(CONJUNCT2 th)) else
let avs,bod = strip_forall(concl th) in
let th1 = SPECL avs th in
let a = fst(dest_imp(concl th1)) in
GENL avs (DISCH a (CONJUNCT2 (UNDISCH th1))) in
let MATCH_IMPS = MATCH_MP MONO_AND in
fun (rth,ith) ->
let ovs,ibod = strip_forall(concl ith) in
let iant,icon = dest_imp ibod in
let ns,prrs = unzip (map dest_ibod (conjuncts icon)) in
let rs,ps = unzip prrs in
let gs = variants (variables ibod) ps in
let svs,tvs = chop_list (length ovs - length ns) ovs in
let sth = SPECL svs rth and jth = SPECL svs ith in
let gimps = subst (zip gs rs) icon in
let prs = map2 (fun n (r,p) ->
let tys,ty = nsplit dest_fun_ty (1--n) (type_of r) in
let gvs = map genvar tys in
list_mk_abs(gvs,mk_conj(list_mk_comb(r,gvs),list_mk_comb(p,gvs))))
ns prrs in
let modify_rule rcl itm =
let avs,bod = strip_forall itm in
if is_imp bod then
let a,c = dest_imp bod in
let mgoal = mk_imp(gimps,mk_imp(vsubst(zip gs ps) a,a)) in
let mth = ASSUME(list_mk_forall(gs@ps@avs,mgoal)) in
let ith_r = BETA_RULE(SPECL (prs @ rs @ avs) mth) in
let jth_r = MP ith_r (prove_triv(lhand(concl ith_r))) in
let t = lhand(concl jth_r) in
let kth_r = UNDISCH jth_r in
let ntm = list_mk_forall(avs,mk_imp(t,c)) in
let lth_r = MP(SPECL avs rcl) kth_r
and lth_p = UNDISCH(SPECL avs (ASSUME ntm)) in
DISCH ntm (GENL avs (DISCH t (CONJ lth_r lth_p)))
else
DISCH itm (GENL avs (CONJ (SPECL avs rcl) (SPECL avs (ASSUME itm)))) in
let mimps = map2 modify_rule (CONJUNCTS sth) (conjuncts iant) in
let th1 = end_itlist (fun th th' -> MATCH_IMPS(CONJ th th')) mimps in
let th2 = BETA_RULE(SPECL prs jth) in
let th3 = IMP_TRANS th1 th2 in
let nasm = lhand(concl th3) in
let th4 = GENL ps (DISCH nasm (weaken_triv(UNDISCH th3))) in
GENL svs (prove_monotonicity_hyps th4);;