-
Notifications
You must be signed in to change notification settings - Fork 2
/
README.html
700 lines (688 loc) · 78.5 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.rmd. Please edit that file -->
<h1 id="chemcal---calibration-functions-for-analytical-chemistry">chemCal -
Calibration functions for analytical chemistry</h1>
<!-- badges: start -->
<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4zCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.codecov.io/gh/jranke/chemCal"><img src="" alt="Codecov test coverage" /></a> <a href="https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxODIiIGhlaWdodD0iMjAiPgogIDx0aXRsZT5SLUNNRC1jaGVjay55YW1sIC0gcGFzc2luZzwvdGl0bGU+CiAgPGRlZnM+CiAgICA8bGluZWFyR3JhZGllbnQgaWQ9IndvcmtmbG93LWZpbGwiIHgxPSI1MCUiIHkxPSIwJSIgeDI9IjUwJSIgeTI9IjEwMCUiPgogICAgICA8c3RvcCBzdG9wLWNvbG9yPSIjNDQ0RDU2IiBvZmZzZXQ9IjAlIj48L3N0b3A+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMyNDI5MkUiIG9mZnNldD0iMTAwJSI+PC9zdG9wPgogICAgPC9saW5lYXJHcmFkaWVudD4KICAgIDxsaW5lYXJHcmFkaWVudCBpZD0ic3RhdGUtZmlsbCIgeDE9IjUwJSIgeTE9IjAlIiB4Mj0iNTAlIiB5Mj0iMTAwJSI+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMzNEQwNTgiIG9mZnNldD0iMCUiPjwvc3RvcD4KICAgICAgPHN0b3Agc3RvcC1jb2xvcj0iIzI4QTc0NSIgb2Zmc2V0PSIxMDAlIj48L3N0b3A+CiAgICA8L2xpbmVhckdyYWRpZW50PgogIDwvZGVmcz4KICA8ZyBmaWxsPSJub25lIiBmaWxsLXJ1bGU9ImV2ZW5vZGQiPgogICAgPGcgZm9udC1mYW1pbHk9IiYjMzk7RGVqYVZ1IFNhbnMmIzM5OyxWZXJkYW5hLEdlbmV2YSxzYW5zLXNlcmlmIiBmb250LXNpemU9IjExIj4KICAgICAgPHBhdGggaWQ9IndvcmtmbG93LWJnIiBkPSJNMCwzIEMwLDEuMzQzMSAxLjM1NTIsMCAzLjAyNzAyNzAzLDAgTDEzMiwwIEwxMzIsMjAgTDMuMDI3MDI3MDMsMjAgQzEuMzU1MiwyMCAwLDE4LjY1NjkgMCwxNyBMMCwzIFoiIGZpbGw9InVybCgjd29ya2Zsb3ctZmlsbCkiIGZpbGwtcnVsZT0ibm9uemVybyI+PC9wYXRoPgogICAgICA8dGV4dCBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgICA8dHNwYW4geD0iMjIuMTk4MTk4MiIgeT0iMTUiIGFyaWEtaGlkZGVuPSJ0cnVlIj5SLUNNRC1jaGVjay55YW1sPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgICA8dGV4dCBmaWxsPSIjRkZGRkZGIj4KICAgICAgICA8dHNwYW4geD0iMjIuMTk4MTk4MiIgeT0iMTQiPlItQ01ELWNoZWNrLnlhbWw8L3RzcGFuPgogICAgICA8L3RleHQ+CiAgICA8L2c+CiAgICA8ZyB0cmFuc2Zvcm09InRyYW5zbGF0ZSgxMzIpIiBmb250LWZhbWlseT0iJiMzOTtEZWphVnUgU2FucyYjMzk7LFZlcmRhbmEsR2VuZXZhLHNhbnMtc2VyaWYiIGZvbnQtc2l6ZT0iMTEiPgogICAgICA8cGF0aCBkPSJNMCAwaDQ2LjkzOUM0OC42MjkgMCA1MCAxLjM0MyA1MCAzdjE0YzAgMS42NTctMS4zNyAzLTMuMDYxIDNIMFYweiIgaWQ9InN0YXRlLWJnIiBmaWxsPSJ1cmwoI3N0YXRlLWZpbGwpIiBmaWxsLXJ1bGU9Im5vbnplcm8iPjwvcGF0aD4KICAgICAgPHRleHQgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyIgYXJpYS1oaWRkZW49InRydWUiPgogICAgICAgIDx0c3BhbiB4PSI0IiB5PSIxNSI+cGFzc2luZzwvdHNwYW4+CiAgICAgIDwvdGV4dD4KICAgICAgPHRleHQgZmlsbD0iI0ZGRkZGRiI+CiAgICAgICAgPHRzcGFuIHg9IjQiIHk9IjE0Ij5wYXNzaW5nPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgPC9nPgogICAgPHBhdGggZmlsbD0iIzk1OURBNSIgZD0iTTExIDNjLTMuODY4IDAtNyAzLjEzMi03IDdhNi45OTYgNi45OTYgMCAwIDAgNC43ODYgNi42NDFjLjM1LjA2Mi40ODItLjE0OC40ODItLjMzMiAwLS4xNjYtLjAxLS43MTgtLjAxLTEuMzA0LTEuNzU4LjMyNC0yLjIxMy0uNDI5LTIuMzUzLS44MjItLjA3OS0uMjAyLS40Mi0uODIzLS43MTctLjk5LS4yNDUtLjEzLS41OTUtLjQ1NC0uMDEtLjQ2My41NTItLjAwOS45NDYuNTA4IDEuMDc3LjcxOC42MyAxLjA1OCAxLjYzNi43NiAyLjAzOS41NzcuMDYxLS40NTUuMjQ1LS43NjEuNDQ2LS45MzYtMS41NTctLjE3NS0zLjE4NS0uNzc5LTMuMTg1LTMuNDU2IDAtLjc2Mi4yNzEtMS4zOTIuNzE4LTEuODgyLS4wNy0uMTc1LS4zMTUtLjg5Mi4wNy0xLjg1NSAwIDAgLjU4Ni0uMTgzIDEuOTI1LjcxOGE2LjUgNi41IDAgMCAxIDEuNzUtLjIzNiA2LjUgNi41IDAgMCAxIDEuNzUuMjM2YzEuMzM4LS45MSAxLjkyNS0uNzE4IDEuOTI1LS43MTguMzg1Ljk2My4xNCAxLjY4LjA3IDEuODU1LjQ0Ni40OS43MTcgMS4xMTIuNzE3IDEuODgyIDAgMi42ODYtMS42MzYgMy4yOC0zLjE5NCAzLjQ1Ni4yNTQuMjE5LjQ3My42MzkuNDczIDEuMjk1IDAgLjkzNi0uMDA5IDEuNjg5LS4wMDkgMS45MjUgMCAuMTg0LjEzMS40MDIuNDgxLjMzMkE3LjAxMSA3LjAxMSAwIDAgMCAxOCAxMGMwLTMuODY3LTMuMTMzLTctNy03eiI+PC9wYXRoPgogIDwvZz4KPC9zdmc+Cgo=" alt="R-CMD-check" /></a></p>
<!-- badges: end -->
<h2 id="overview">Overview</h2>
<p>chemCal is an R package providing some basic functions for
conveniently working with linear calibration curves with one explanatory
variable.</p>
<h2 id="installation">Installation</h2>
<p>From within <a href="https://www.r-project.org/">R</a>, get the
official chemCal release using</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"chemCal"</span>)</span></code></pre></div>
<h2 id="usage">Usage</h2>
<p>chemCal works with univariate linear models of class <code>lm</code>.
Working with one of the datasets coming with chemCal, we can produce a
calibration plot using the <code>calplot</code> function:</p>
<h3 id="plotting-a-calibration">Plotting a calibration</h3>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(chemCal)</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>m0 <span class="ot"><-</span> <span class="fu">lm</span>(y <span class="sc">~</span> x, <span class="at">data =</span> massart97ex3)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">calplot</span>(m0)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<h3 id="lod-and-loq">LOD and LOQ</h3>
<p>If you use unweighted regression, as in the above example, we can
calculate a Limit Of Detection (LOD) from the calibration data.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lod</span>(m0)</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $x</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 5.407085</span></span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $y</span></span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 13.63911</span></span></code></pre></div>
<p>This is the minimum detectable value (German: Erfassungsgrenze),
i.e. the value where the probability that the signal is not detected
although the analyte is present is below a specified error tolerance
beta (default is 0.05 following the IUPAC recommendation).</p>
<p>You can also calculate the decision limit (German: Nachweisgrenze),
i.e. the value that is significantly different from the blank signal
with an error tolerance alpha (default is 0.05, again following IUPAC
recommendations) by setting beta to 0.5.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lod</span>(m0, <span class="at">beta =</span> <span class="fl">0.5</span>)</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $x</span></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 2.720388</span></span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $y</span></span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 8.314841</span></span></code></pre></div>
<p>Furthermore, you can calculate the Limit Of Quantification (LOQ),
being defined as the value where the relative error of the
quantification given the calibration model reaches a prespecified value
(default is 1/3).</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">loq</span>(m0)</span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $x</span></span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 9.627349</span></span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $y</span></span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 22.00246</span></span></code></pre></div>
<h3 id="confidence-intervals-for-measured-values">Confidence intervals
for measured values</h3>
<p>Finally, you can get a confidence interval for the values measured
using the calibration curve, i.e. for the inverse predictions using the
function <code>inverse.predict</code>.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="dv">90</span>)</span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Prediction</span></span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 1.576985</span></span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Confidence</span></span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 3.230307</span></span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 40.70952 47.17014</span></span></code></pre></div>
<p>If you have replicate measurements of the same sample, you can also
give a vector of numbers.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="fu">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Prediction</span></span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.796884</span></span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Confidence</span></span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 1.632343</span></span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 42.30749 45.57217</span></span></code></pre></div>
<h2 id="reference">Reference</h2>
<p>You can use the R help system to view documentation, or you can have
a look at the <a href="https://pkgdown.jrwb.de/chemCal/">online
documentation</a>.</p>
</body>
</html>