-
Notifications
You must be signed in to change notification settings - Fork 1
/
hacnn.py
378 lines (324 loc) · 13.2 KB
/
hacnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from __future__ import absolute_import
from __future__ import division
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
__all__ = ['HACNN']
class ConvBlock(nn.Module):
"""Basic convolutional block:
convolution + batch normalization + relu.
Args (following http://pytorch.org/docs/master/nn.html#torch.nn.Conv2d):
- in_c (int): number of input channels.
- out_c (int): number of output channels.
- k (int or tuple): kernel size.
- s (int or tuple): stride.
- p (int or tuple): padding.
"""
def __init__(self, in_c, out_c, k, s=1, p=0):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_c, out_c, k, stride=s, padding=p)
self.bn = nn.BatchNorm2d(out_c)
def forward(self, x):
return F.relu(self.bn(self.conv(x)))
class InceptionA(nn.Module):
"""
Args:
- in_channels (int): number of input channels
- out_channels (int): number of output channels AFTER concatenation
"""
def __init__(self, in_channels, out_channels):
super(InceptionA, self).__init__()
mid_channels = out_channels // 4
self.stream1 = nn.Sequential(
ConvBlock(in_channels, mid_channels, 1),
ConvBlock(mid_channels, mid_channels, 3, p=1),
)
self.stream2 = nn.Sequential(
ConvBlock(in_channels, mid_channels, 1),
ConvBlock(mid_channels, mid_channels, 3, p=1),
)
self.stream3 = nn.Sequential(
ConvBlock(in_channels, mid_channels, 1),
ConvBlock(mid_channels, mid_channels, 3, p=1),
)
self.stream4 = nn.Sequential(
nn.AvgPool2d(3, stride=1, padding=1),
ConvBlock(in_channels, mid_channels, 1),
)
def forward(self, x):
s1 = self.stream1(x)
s2 = self.stream2(x)
s3 = self.stream3(x)
s4 = self.stream4(x)
y = torch.cat([s1, s2, s3, s4], dim=1)
return y
class InceptionB(nn.Module):
"""
Args:
- in_channels (int): number of input channels
- out_channels (int): number of output channels AFTER concatenation
"""
def __init__(self, in_channels, out_channels):
super(InceptionB, self).__init__()
mid_channels = out_channels // 4
self.stream1 = nn.Sequential(
ConvBlock(in_channels, mid_channels, 1),
ConvBlock(mid_channels, mid_channels, 3, s=2, p=1),
)
self.stream2 = nn.Sequential(
ConvBlock(in_channels, mid_channels, 1),
ConvBlock(mid_channels, mid_channels, 3, p=1),
ConvBlock(mid_channels, mid_channels, 3, s=2, p=1),
)
self.stream3 = nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
ConvBlock(in_channels, mid_channels*2, 1),
)
def forward(self, x):
s1 = self.stream1(x)
s2 = self.stream2(x)
s3 = self.stream3(x)
y = torch.cat([s1, s2, s3], dim=1)
return y
class SpatialAttn(nn.Module):
"""Spatial Attention (Sec. 3.1.I.1)"""
def __init__(self):
super(SpatialAttn, self).__init__()
self.conv1 = ConvBlock(1, 1, 3, s=2, p=1)
self.conv2 = ConvBlock(1, 1, 1)
def forward(self, x):
# global cross-channel averaging
x = x.mean(1, keepdim=True)
# 3-by-3 conv
x = self.conv1(x)
# bilinear resizing
x = F.upsample(x, (x.size(2)*2, x.size(3)*2), mode='bilinear', align_corners=True)
# scaling conv
x = self.conv2(x)
return x
class ChannelAttn(nn.Module):
"""Channel Attention (Sec. 3.1.I.2)"""
def __init__(self, in_channels, reduction_rate=16):
super(ChannelAttn, self).__init__()
assert in_channels%reduction_rate == 0
self.conv1 = ConvBlock(in_channels, in_channels // reduction_rate, 1)
self.conv2 = ConvBlock(in_channels // reduction_rate, in_channels, 1)
def forward(self, x):
# squeeze operation (global average pooling)
x = F.avg_pool2d(x, x.size()[2:])
# excitation operation (2 conv layers)
x = self.conv1(x)
x = self.conv2(x)
return x
class SoftAttn(nn.Module):
"""Soft Attention (Sec. 3.1.I)
Aim: Spatial Attention + Channel Attention
Output: attention maps with shape identical to input.
"""
def __init__(self, in_channels):
super(SoftAttn, self).__init__()
self.spatial_attn = SpatialAttn()
self.channel_attn = ChannelAttn(in_channels)
self.conv = ConvBlock(in_channels, in_channels, 1)
def forward(self, x):
y_spatial = self.spatial_attn(x)
y_channel = self.channel_attn(x)
y = y_spatial * y_channel
y = F.sigmoid(self.conv(y))
return y
class HardAttn(nn.Module):
"""Hard Attention (Sec. 3.1.II)"""
def __init__(self, in_channels):
super(HardAttn, self).__init__()
self.fc = nn.Linear(in_channels, 4*2)
self.init_params()
def init_params(self):
self.fc.weight.data.zero_()
self.fc.bias.data.copy_(torch.tensor([0, -0.75, 0, -0.25, 0, 0.25, 0, 0.75], dtype=torch.float))
def forward(self, x):
# squeeze operation (global average pooling)
x = F.avg_pool2d(x, x.size()[2:]).view(x.size(0), x.size(1))
# predict transformation parameters
theta = F.tanh(self.fc(x))
theta = theta.view(-1, 4, 2)
return theta
class HarmAttn(nn.Module):
"""Harmonious Attention (Sec. 3.1)"""
def __init__(self, in_channels):
super(HarmAttn, self).__init__()
self.soft_attn = SoftAttn(in_channels)
self.hard_attn = HardAttn(in_channels)
def forward(self, x):
y_soft_attn = self.soft_attn(x)
theta = self.hard_attn(x)
return y_soft_attn, theta
class HACNN(nn.Module):
"""
Harmonious Attention Convolutional Neural Network
Reference:
Li et al. Harmonious Attention Network for Person Re-identification. CVPR 2018.
Args:
- num_classes (int): number of classes to predict
- nchannels (list): number of channels AFTER concatenation
- feat_dim (int): feature dimension for a single stream
- learn_region (bool): whether to learn region features (i.e. local branch)
"""
def __init__(self, num_classes, loss={'xent'}, nchannels=[128, 256, 384], feat_dim=512, learn_region=True, use_gpu=True, **kwargs):
super(HACNN, self).__init__()
self.loss = loss
self.learn_region = learn_region
self.use_gpu = use_gpu
self.conv = ConvBlock(3, 32, 3, s=2, p=1)
# Construct Inception + HarmAttn blocks
# ============== Block 1 ==============
self.inception1 = nn.Sequential(
InceptionA(32, nchannels[0]),
InceptionB(nchannels[0], nchannels[0]),
)
self.ha1 = HarmAttn(nchannels[0])
# ============== Block 2 ==============
self.inception2 = nn.Sequential(
InceptionA(nchannels[0], nchannels[1]),
InceptionB(nchannels[1], nchannels[1]),
)
self.ha2 = HarmAttn(nchannels[1])
# ============== Block 3 ==============
self.inception3 = nn.Sequential(
InceptionA(nchannels[1], nchannels[2]),
InceptionB(nchannels[2], nchannels[2]),
)
self.ha3 = HarmAttn(nchannels[2])
self.fc_global = nn.Sequential(
nn.Linear(nchannels[2], feat_dim),
nn.BatchNorm1d(feat_dim),
nn.ReLU(),
)
self.classifier_global = nn.Linear(feat_dim, num_classes)
if self.learn_region:
self.init_scale_factors()
self.local_conv1 = InceptionB(32, nchannels[0])
self.local_conv2 = InceptionB(nchannels[0], nchannels[1])
self.local_conv3 = InceptionB(nchannels[1], nchannels[2])
self.fc_local = nn.Sequential(
nn.Linear(nchannels[2]*4, feat_dim),
nn.BatchNorm1d(feat_dim),
nn.ReLU(),
)
self.classifier_local = nn.Linear(feat_dim, num_classes)
self.feat_dim = feat_dim * 2
else:
self.feat_dim = feat_dim
def init_scale_factors(self):
# initialize scale factors (s_w, s_h) for four regions
self.scale_factors = []
self.scale_factors.append(torch.tensor([[1, 0], [0, 0.25]], dtype=torch.float))
self.scale_factors.append(torch.tensor([[1, 0], [0, 0.25]], dtype=torch.float))
self.scale_factors.append(torch.tensor([[1, 0], [0, 0.25]], dtype=torch.float))
self.scale_factors.append(torch.tensor([[1, 0], [0, 0.25]], dtype=torch.float))
def stn(self, x, theta):
"""Perform spatial transform
- x: (batch, channel, height, width)
- theta: (batch, 2, 3)
"""
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def transform_theta(self, theta_i, region_idx):
"""Transform theta to include (s_w, s_h),
resulting in (batch, 2, 3)"""
scale_factors = self.scale_factors[region_idx]
theta = torch.zeros(theta_i.size(0), 2, 3)
theta[:,:,:2] = scale_factors
theta[:,:,-1] = theta_i
if self.use_gpu: theta = theta.cuda()
return theta
def forward(self, x):
assert x.size(2) == 160 and x.size(3) == 64, \
"Input size does not match, expected (160, 64) but got ({}, {})".format(x.size(2), x.size(3))
x = self.conv(x)
# ============== Block 1 ==============
# global branch
x1 = self.inception1(x)
x1_attn, x1_theta = self.ha1(x1)
x1_out = x1 * x1_attn
# local branch
if self.learn_region:
x1_local_list = []
for region_idx in range(4):
x1_theta_i = x1_theta[:,region_idx,:]
x1_theta_i = self.transform_theta(x1_theta_i, region_idx)
x1_trans_i = self.stn(x, x1_theta_i)
x1_trans_i = F.upsample(x1_trans_i, (24, 28), mode='bilinear', align_corners=True)
x1_local_i = self.local_conv1(x1_trans_i)
x1_local_list.append(x1_local_i)
# ============== Block 2 ==============
# Block 2
# global branch
x2 = self.inception2(x1_out)
x2_attn, x2_theta = self.ha2(x2)
x2_out = x2 * x2_attn
# local branch
if self.learn_region:
x2_local_list = []
for region_idx in range(4):
x2_theta_i = x2_theta[:,region_idx,:]
x2_theta_i = self.transform_theta(x2_theta_i, region_idx)
x2_trans_i = self.stn(x1_out, x2_theta_i)
x2_trans_i = F.upsample(x2_trans_i, (12, 14), mode='bilinear', align_corners=True)
x2_local_i = x2_trans_i + x1_local_list[region_idx]
x2_local_i = self.local_conv2(x2_local_i)
x2_local_list.append(x2_local_i)
# ============== Block 3 ==============
# Block 3
# global branch
x3 = self.inception3(x2_out)
x3_attn, x3_theta = self.ha3(x3)
x3_out = x3 * x3_attn
# local branch
if self.learn_region:
x3_local_list = []
for region_idx in range(4):
x3_theta_i = x3_theta[:,region_idx,:]
x3_theta_i = self.transform_theta(x3_theta_i, region_idx)
x3_trans_i = self.stn(x2_out, x3_theta_i)
x3_trans_i = F.upsample(x3_trans_i, (6, 7), mode='bilinear', align_corners=True)
x3_local_i = x3_trans_i + x2_local_list[region_idx]
x3_local_i = self.local_conv3(x3_local_i)
x3_local_list.append(x3_local_i)
# ============== Feature generation ==============
# global branch
x_global = F.avg_pool2d(x3_out, x3_out.size()[2:]).view(x3_out.size(0), x3_out.size(1))
x_global = self.fc_global(x_global)
# local branch
if self.learn_region:
x_local_list = []
for region_idx in range(4):
x_local_i = x3_local_list[region_idx]
x_local_i = F.avg_pool2d(x_local_i, x_local_i.size()[2:]).view(x_local_i.size(0), -1)
x_local_list.append(x_local_i)
x_local = torch.cat(x_local_list, 1)
x_local = self.fc_local(x_local)
if not self.training:
# l2 normalization before concatenation
if self.learn_region:
x_global = x_global / x_global.norm(p=2, dim=1, keepdim=True)
x_local = x_local / x_local.norm(p=2, dim=1, keepdim=True)
return torch.cat([x_global, x_local], 1)
else:
return x_global
prelogits_global = self.classifier_global(x_global)
if self.learn_region:
prelogits_local = self.classifier_local(x_local)
if self.loss == {'xent'}:
if self.learn_region:
return (prelogits_global, prelogits_local)
else:
return prelogits_global
elif self.loss == {'xent', 'htri'}:
if self.learn_region:
return (prelogits_global, prelogits_local), (x_global, x_local)
else:
return prelogits_global, x_global
else:
raise KeyError("Unsupported loss: {}".format(self.loss))