-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate_gpu.py
121 lines (103 loc) · 3.85 KB
/
evaluate_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import scipy.io
import torch
import numpy as np
import time
import os
#######################################################################
# Evaluate
def evaluate(qf, ql, qc, gf, gl, gc):
query = qf.view(-1, 1)
# print(query.shape)
score = torch.mm(gf, query)
score = score.squeeze(1).cpu()
score = score.numpy()
# predict index
index = np.argsort(score) # from small to large
index = index[::-1]
# index = index[0:2000]
# good index
query_index = np.argwhere(gl == ql)
camera_index = np.argwhere(gc == qc)
good_index = np.setdiff1d(query_index, camera_index, assume_unique=True)
junk_index1 = np.argwhere(gl == -1)
junk_index2 = np.intersect1d(query_index, camera_index)
junk_index = np.append(junk_index2, junk_index1) # .flatten())
CMC_tmp = compute_mAP(index, good_index, junk_index)
return CMC_tmp
def compute_mAP(index, good_index, junk_index):
ap = 0
cmc = torch.IntTensor(len(index)).zero_()
if good_index.size == 0: # if empty
cmc[0] = -1
return ap, cmc
# remove junk_index
mask = np.in1d(index, junk_index, invert=True)
index = index[mask]
# find good_index index
ngood = len(good_index)
mask = np.in1d(index, good_index)
rows_good = np.argwhere(mask == True)
rows_good = rows_good.flatten()
cmc[rows_good[0]:] = 1
for i in range(ngood):
d_recall = 1.0 / ngood
precision = (i + 1) * 1.0 / (rows_good[i] + 1)
if rows_good[i] != 0:
old_precision = i * 1.0 / rows_good[i]
else:
old_precision = 1.0
ap = ap + d_recall * (old_precision + precision) / 2
return ap, cmc
######################################################################
result = scipy.io.loadmat('./pytorch_result.mat')
query_feature = torch.FloatTensor(result['query_f'])
query_cam = result['query_cam'][0]
query_label = result['query_label'][0]
gallery_feature = torch.FloatTensor(result['gallery_f'])
gallery_cam = result['gallery_cam'][0]
gallery_label = result['gallery_label'][0]
multi = os.path.isfile('./multi_query.mat')
if multi:
m_result = scipy.io.loadmat('multi_query.mat')
mquery_feature = torch.FloatTensor(m_result['mquery_f'])
mquery_cam = m_result['mquery_cam'][0]
mquery_label = m_result['mquery_label'][0]
mquery_feature = mquery_feature.cuda()
query_feature = query_feature.cuda()
gallery_feature = gallery_feature.cuda()
print(query_feature.shape)
CMC = torch.IntTensor(len(gallery_label)).zero_()
ap = 0.0
# print(query_label)
for i in range(len(query_label)):
ap_tmp, CMC_tmp = evaluate(query_feature[i], query_label[i], query_cam[i], gallery_feature, gallery_label,
gallery_cam)
if CMC_tmp[0] == -1:
continue
CMC = CMC + CMC_tmp
ap += ap_tmp
# print(i, CMC_tmp[0])
CMC = CMC.float()
CMC = CMC / len(query_label) # average CMC
print('Rank@1:%f Rank@5:%f Rank@10:%f Rank@20:%f mAP:%f' % (CMC[0], CMC[4], CMC[9], CMC[19], ap / len(query_label)))
# multiple-query
CMC = torch.IntTensor(len(gallery_label)).zero_()
ap = 0.0
if multi:
for i in range(len(query_label)):
mquery_index1 = np.argwhere(mquery_label == query_label[i])
mquery_index2 = np.argwhere(mquery_cam == query_cam[i])
mquery_index = np.intersect1d(mquery_index1, mquery_index2)
mq = torch.mean(mquery_feature[mquery_index, :], dim=0)
ap_tmp, CMC_tmp = evaluate(mq, query_label[i], query_cam[i], gallery_feature, gallery_label, gallery_cam)
if CMC_tmp[0] == -1:
continue
CMC = CMC + CMC_tmp
ap += ap_tmp
# print(i, CMC_tmp[0])
CMC = CMC.float()
CMC = CMC / len(query_label) # average CMC
print('multi Rank@1:%f Rank@5:%f Rank@10:%f Rank@20:%f mAP:%f' %
(CMC[0], CMC[4], CMC[9], CMC[19], ap / len(query_label)))