-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearRegression.py
57 lines (43 loc) · 1.57 KB
/
LinearRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import random
style.use('fivethirtyeight')
#xs = np.array([1, 2, 3, 4, 5, 6], dtype=np.float64)
#ys = np.array([5, 4, 6, 5, 6, 7], dtype=np.float64)
def create_dataset(hm, variance, step=2, correlation=False):
val = 1
ys = []
for i in range (hm) :
y = val + random.randrange(-variance, variance)
ys.append(y)
if correlation and correlation == 'pos':
val+=step
elif correlation and correlation == 'neg':
val-=step
xs = [i for i in range(len(ys))]
return np.array(xs, dtype=np.float64), np.array(ys, dtype=np.float64)
def best_fit_slope_and_intercept(xs, ys):
m = ( ((mean(xs) * mean(ys)) - mean(xs*ys)) /
((mean(xs) * mean(xs)) - mean(xs*xs)) )
b = mean(ys) - m*mean(xs)
return m, b
def squared_error(ys_orig, ys_line):
return sum((ys_line-ys_orig)**2)
def coefficient_of_determination(ys_orig,ys_line):
y_mean_line = [mean(ys_orig) for y in ys_orig]
squared_error_regr = squared_error(ys_orig, ys_line)
squared_error_y_mean = squared_error(ys_orig, y_mean_line)
return 1 - (squared_error_regr / squared_error_y_mean)
xs, ys = create_dataset(40, 10, 2 , correlation='pos')
m, b = best_fit_slope_and_intercept(xs, ys)
regression_line = [(m*x)+b for x in xs]
predict_x = 8
predict_y = m*(predict_x)+b
r_squared = coefficient_of_determination(ys, regression_line)
print(r_squared)
plt.scatter(xs, ys)
plt.scatter(predict_x, predict_y)
plt.plot(xs, regression_line)
plt.show()