-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKNearestNeighbors.py
62 lines (49 loc) · 1.75 KB
/
KNearestNeighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
from math import sqrt
import warnings
from collections import Counter
import pandas as pd
import random
dataset = {'k': [[1,2],[2,3],[3,1]], 'r': [[6,5], [7,7], [8,6]]}
new_features = [5,7]
def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warnings.warn('K is set to a value less than total voting groups!')
distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
distances.append([euclidean_distance, group])
votes = [i[1] for i in sorted(distances) [:k]]
#print(Counter(votes).most_common(1))
vote_result = Counter(votes).most_common(1)[0][0]
confidence = Counter(votes).most_common(1)[0][1] / k
#print(vote_result, confidence)
return vote_result, confidence
accuracies = []
for i in range(25):
df = pd.read_csv('breast_cancer_wisconsin.data')
df.replace('?', -99999, inplace=True)
df.drop(['id'], 1, inplace=True)
full_data = df.astype(float).values.tolist()
random.shuffle(full_data)
test_size = 0.2
train_set = {2:[], 4:[]}
test_set = {2:[], 4:[]}
train_data = full_data[:-int(test_size*len(full_data))]
test_data = full_data[-int(test_size*len(full_data)):]
for i in train_data:
train_set[i[-1]].append(i[:-1])
for i in test_data:
test_set[i[-1]].append(i[:-1])
correct = 0
total = 0
for group in test_set:
for data in test_set[group]:
vote,confidence = k_nearest_neighbors(train_set, data, k=5)
if group == vote:
correct += 1
total += 1
#print('Accuracy:', correct/total)
accuracies.append(correct/total)
print(sum(accuracies)/len(accuracies))