-
Notifications
You must be signed in to change notification settings - Fork 1
/
astar.py
133 lines (90 loc) · 3.55 KB
/
astar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from warnings import warn
import heapq
class Node:
def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def __repr__(self):
return f"{self.position} - g: {self.g} h: {self.h} f: {self.f}"
def __lt__(self, other):
return self.f < other.f
def __gt__(self, other):
return self.f > other.f
def return_path(current_node):
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1]
def astar(maze, start, end, allow_diagonal_movement=True):
"""
Returns a list of tuples as a path from the given start to the given end in the given maze
:param maze:
:param start:
:param end:
:return:
"""
start_node = Node(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = Node(None, end)
end_node.g = end_node.h = end_node.f = 0
open_list = []
closed_list = []
heapq.heapify(open_list)
heapq.heappush(open_list, start_node)
outer_iterations = 0
max_iterations = (len(maze[0]) * len(maze) // 2)
adjacent_squares = ((0, -1), (0, 1), (-1, 0), (1, 0),)
if allow_diagonal_movement:
adjacent_squares = ((0, -1), (0, 1), (-1, 0), (1, 0),
(-1, -1), (-1, 1), (1, -1), (1, 1),)
while len(open_list) > 0:
outer_iterations += 1
if outer_iterations > max_iterations:
warn("giving up on pathfinding too many iterations")
return return_path(current_node)
# Get the current node
current_node = heapq.heappop(open_list)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
return return_path(current_node)
# Generate children
children = []
for new_position in adjacent_squares: # Adjacent squares
# Get node position
node_position = (
current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
# Make sure within range
if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (len(maze[len(maze)-1]) - 1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if maze[node_position[0]][node_position[1]] != 0:
continue
# Create new node
new_node = Node(current_node, node_position)
# Append
children.append(new_node)
# Loop through children
for child in children:
# Child is on the closed list
if len([closed_child for closed_child in closed_list if closed_child == child]) > 0:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) **
2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h
# Child is already in the open list
if len([open_node for open_node in open_list if child.position == open_node.position and child.g > open_node.g]) > 0:
continue
# Add the child to the open list
heapq.heappush(open_list, child)
warn("Couldn't get a path to destination")
return None