-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathplotResults.py
93 lines (63 loc) · 1.97 KB
/
plotResults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import pdb
import sys
import matplotlib.pyplot as plt
def loadMetrics(folderName):
# Loss
loss = np.load(folderName + '/'+folderName+'_loss.npy')
dice = np.load(folderName + '/'+folderName+'_DSCs.npy')
# Dice training
return loss,dice
def plot2Models(modelNames):
model1Name = modelNames[0]
model2Name = modelNames[1]
[loss1, DSC1] = loadMetrics(model1Name)
[loss2, DSC2] = loadMetrics(model2Name)
numEpochs1 = len(loss1)
numEpochs2 = len(loss2)
lim = numEpochs1
if numEpochs2 < numEpochs1:
lim = numEpochs2
# Plot features
#xAxis = np.arange(0, lim, 1)
xAxis = np.arange(0, 370, 10)
plt.figure(1)
# Training Dice
#plt.subplot(212)
plt.plot(xAxis, DSC1[0:lim].mean(axis=2), 'r-', label=model1Name,linewidth=2)
plt.plot(xAxis, DSC2[0:lim].mean(axis=2), 'b-', label=model2Name,linewidth=2)
legend = plt.legend(loc='lower center', shadow=True, fontsize='large')
plt.title('DSC Validation)')
plt.grid(True)
plt.ylim([0.0, 1])
plt.xlabel('Number of epochs')
plt.ylabel('DSC')
#pdb.set_trace()
#plt.xlim([0, 10,370])
plt.show()
def plot(argv):
modelNames = []
numModels = len(argv)
for i in range(numModels):
modelNames.append(argv[i])
def oneModel():
print "-- Ploting one model --"
plot1Model(modelNames)
def twoModels():
print "-- Ploting two models --"
plot2Models(modelNames)
def threeModels():
print "-- Ploting three models --"
plot3Models(modelNames)
def fourModels():
print "-- Ploting four models --"
plot4Models(modelNames)
# map the inputs to the function blocks
options = {1 : oneModel,
2 : twoModels,
3: threeModels,
4 : fourModels
}
options[numModels]()
if __name__ == '__main__':
plot(sys.argv[1:])