forked from ComputerAidedLL/llwikibook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathill.tex
315 lines (293 loc) · 8.79 KB
/
ill.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
\chapter{Intuitionistic linear logic}\label{intuitionistic-linear-logic}
Intuitionistic Linear Logic (\(ILL\)) is the
\wantedpage{intuitionnistic restriction} of
linear logic: the sequent calculus of \(ILL\) is obtained from the
\hyperref[sequents-and-proofs]{two-sided sequent calculus
of linear logic} by constraining sequents to have exactly one formula on
the right-hand side: \(\Gamma\vdash A\).
The connectives \(\parr\), \(\bot\) and \(\wn\) are not available
anymore, but the linear implication \(\limp\) is.
\section{Sequent Calculus}
\begin{gather*}
\LabelRule{\rulename{ax}}
\NulRule{A\vdash A}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash A}
\AxRule{\Delta,A\vdash C}
\LabelRule{\rulename{cut}}
\BinRule{\Gamma,\Delta\vdash C}
\DisplayProof
\\[2ex]
\AxRule{\Gamma\vdash A}
\AxRule{\Delta\vdash B}
\LabelRule{\tens R}
\BinRule{\Gamma,\Delta\vdash A\tens B}
\DisplayProof
\qquad
\AxRule{\Gamma,A,B\vdash C}
\LabelRule{\tens L}
\UnaRule{\Gamma,A\tens B\vdash C}
\DisplayProof
\qquad
\LabelRule{\one R}
\NulRule{{}\vdash\one}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash C}
\LabelRule{\one L}
\UnaRule{\Gamma,\one\vdash C}
\DisplayProof
\\[2ex]
\AxRule{\Gamma,A\vdash B}
\LabelRule{\limp R}
\UnaRule{\Gamma\vdash A\limp B}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash A}
\AxRule{\Delta,B\vdash C}
\LabelRule{\limp L}
\BinRule{\Gamma,\Delta,A\limp B\vdash C}
\DisplayProof
\\[2ex]
\AxRule{\Gamma\vdash A}
\AxRule{\Gamma\vdash B}
\LabelRule{\with R}
\BinRule{\Gamma\vdash A\with B}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\LabelRule{\with_1 L}
\UnaRule{\Gamma,A\with B\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma,B\vdash C}
\LabelRule{\with_2 L}
\UnaRule{\Gamma,A\with B\vdash C}
\DisplayProof
\qquad
\LabelRule{\top R}
\NulRule{\Gamma\vdash\top}
\DisplayProof
\\[2ex]
\AxRule{\Gamma\vdash A}
\LabelRule{\plus_1 R}
\UnaRule{\Gamma\vdash A\plus B}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash B}
\LabelRule{\plus_2 R}
\UnaRule{\Gamma\vdash A\plus B}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\AxRule{\Gamma,B\vdash C}
\LabelRule{\plus L}
\BinRule{\Gamma,A\plus B\vdash C}
\DisplayProof
\qquad
\LabelRule{\zero L}
\NulRule{\Gamma,\zero\vdash C}
\DisplayProof
\\[2ex]
\AxRule{\oc{\Gamma}\vdash A}
\LabelRule{\oc R}
\UnaRule{\oc{\Gamma}\vdash\oc{A}}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\LabelRule{\oc d L}
\UnaRule{\Gamma,\oc{A}\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma,\oc{A},\oc{A}\vdash C}
\LabelRule{\oc c L}
\UnaRule{\Gamma,\oc{A}\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash C}
\LabelRule{\oc w L}
\UnaRule{\Gamma,\oc{A}\vdash C}
\DisplayProof
\\[2ex]
\AxRule{\Gamma\vdash A}
\LabelRule{\forall R}
\UnaRule{\Gamma\vdash \forall\xi A}
\DisplayProof
\qquad
\AxRule{\Gamma,A[\tau/\xi]\vdash C}
\LabelRule{\forall L}
\UnaRule{\Gamma,\forall\xi A\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash A[\tau/\xi]}
\LabelRule{\exists R}
\UnaRule{\Gamma\vdash\exists\xi A}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\LabelRule{\exists L}
\UnaRule{\Gamma,\exists\xi A\vdash C}
\DisplayProof
\end{gather*}
with \(\xi\) not free in \(\Gamma,C\) in the rules \(\forall R\) and \(\exists L\).
By restricting to connectives $\tens$, $\one$ and $\limp$, one gets Intuitionistic Multiplicative Linear Logic (\(IMLL\)).\label{imll}
\section{The intuitionistic fragment of linear logic}\label{the-intuitionistic-fragment-of-linear-logic}
In order to characterize intuitionistic linear logic inside linear
logic, we define the intuitionistic restriction of linear formulas:
\begin{equation*}
J ::= X \mid J\tens J \mid \one \mid J\limp J \mid J\with J \mid \top \mid J\plus J \mid \zero \mid \oc{J} \mid \forall\xi J \mid \exists\xi J
\end{equation*}
\(JLL\) is the \hyperref[fragment]{fragment} of linear logic obtained by restriction to
intuitionistic formulas.
\begin{proposition}[From $ILL$ to $JLL$]
If $\Gamma\vdash A$ is provable in $ILL_{012}$, it is provable in $JLL_{012}$.
\end{proposition}
\begin{proof}
$ILL_{012}$ is included in $JLL_{012}$.
\end{proof}
\begin{theorem}[From $JLL$ to $ILL$]
If $\Gamma\vdash\Delta$ is provable in $JLL_{12}$, it is provable in $ILL_{12}$.
\end{theorem}
\begin{proof}
We only prove the first order case, a proof of the full result is given in the PhD thesis of Harold Schellinx~\cite{phdschellinx}.
Consider a cut-free proof of $\Gamma\vdash\Delta$ in $JLL_{12}$, we can prove by induction on the length of such a proof that it belongs to $ILL_{12}$.
\end{proof}
\begin{corollary}[Unique conclusion in $JLL$]\label{uconcljll}
If $\Gamma\vdash\Delta$ is provable in $JLL_{12}$ then $\Delta$ is a singleton.
\end{corollary}
The theorem is also valid for formulas containing \(\one\) or \(\top\)
but not anymore with \(\zero\).
\({}\vdash((X\limp Y)\limp\zero)\limp(X\tens(\zero\limp Z))\) is
provable in \(JLL_0\):
\begin{prooftree}
\LabelRule{\rulename{ax}}
\NulRule{X\vdash X}
\LabelRule{\zero L}
\NulRule{\zero\vdash Y,Z}
\LabelRule{\limp R}
\UnaRule{{}\vdash Y,\zero\limp Z}
\LabelRule{\tens R}
\BinRule{X\vdash Y,X\tens(\zero\limp Z)}
\LabelRule{\limp R}
\UnaRule{{}\vdash X\limp Y,X\tens(\zero\limp Z)}
\LabelRule{\zero L}
\NulRule{\zero\vdash {}}
\LabelRule{\limp L}
\BinRule{(X\limp Y)\limp\zero\vdash X\tens(\zero\limp Z)}
\LabelRule{\limp R}
\UnaRule{{}\vdash((X\limp Y)\limp\zero)\limp(X\tens(\zero\limp Z))}
\end{prooftree}
but not in \(ILL_0\).
\section{Input / output polarities}\label{input-output-polarities}
In order to go to \(LL\) without \(\limp\), we consider two classes of
formulas: \emph{input formulas} (\(I\)) and \emph{output formulas}
(\(O\)).
\begin{align*}
I &::= X\orth \mid I\parr I \mid \bot \mid I\tens O \mid O\tens I \mid I\plus I \mid \zero \mid I\with I \mid \top \mid \wn{I} \mid \exists\xi I \mid \forall\xi I \\
O &::= X \mid O\tens O \mid \one \mid O\parr I \mid I\parr O \mid O\with O \mid \top \mid O\plus O \mid \zero \mid \oc{O} \mid \forall\xi O \mid \exists\xi O
\end{align*}
By applying the definition of the linear implication
\(A\limp B = A\orth\parr B\), any formula of \(JLL\) is mapped to an
output formula (and the dual of a \(JLL\) formula to an input formula).
Conversely, any output formula is coming from a \(JLL\) formula in this
way (up to commutativity of \(\parr\): \(O\parr I = I\parr O\)).
The \hyperref[fragment]{fragment} of linear logic obtained by restriction to
input/output formulas is thus equivalent to \(JLL\), but the closure of
the set of input/output formulas under orthogonal allows for a one-sided
presentation.
\begin{gather*}
\LabelRule{\rulename{ax}}
\NulRule{\vdash O\orth,O}
\DisplayProof
\qquad
\AxRule{{}\vdash \Gamma,O}
\AxRule{{}\vdash\Delta,O\orth}
\LabelRule{\rulename{cut}}
\BinRule{{}\vdash\Gamma,\Delta}
\DisplayProof
\\[2ex]
\AxRule{{}\vdash\Gamma,A}
\AxRule{{}\vdash\Delta,B}
\LabelRule{\tens}
\BinRule{{}\vdash\Gamma,\Delta,A\tens B}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma,A,B}
\LabelRule{\parr}
\UnaRule{{}\vdash\Gamma,A\parr B}
\DisplayProof
\qquad
\LabelRule{\one}
\NulRule{{}\vdash\one}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma}
\LabelRule{\bot}
\UnaRule{{}\vdash\Gamma,\bot}
\DisplayProof
\\[2ex]
\AxRule{{}\vdash\Gamma,A}
\AxRule{{}\vdash\Gamma,B}
\LabelRule{\with}
\BinRule{{}\vdash\Gamma,A\with B}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma,A}
\LabelRule{\plus_1}
\UnaRule{{}\vdash\Gamma,A\plus B}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma,B}
\LabelRule{\plus_2}
\UnaRule{{}\vdash\Gamma,A\plus B}
\DisplayProof
\qquad
\LabelRule{\top}
\NulRule{{}\vdash\Gamma,\top}
\DisplayProof
\\[2ex]
\AxRule{{}\vdash\wn{\Gamma},O}
\LabelRule{\oc}
\UnaRule{{}\vdash\wn{\Gamma},\oc{O}}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma,I}
\LabelRule{\wn d}
\UnaRule{{}\vdash\Gamma,\wn{I}}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma,\wn{I},\wn{I}}
\LabelRule{\wn c}
\UnaRule{{}\vdash\Gamma,\wn{I}}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma}
\LabelRule{\wn w}
\UnaRule{{}\vdash\Gamma,\wn{I}}
\DisplayProof
\\[2ex]
\AxRule{{}\vdash\Gamma,A}
\LabelRule{\forall}
\UnaRule{{}\vdash\Gamma,\forall\xi A}
\DisplayProof
\qquad
\AxRule{{}\vdash\Gamma,A[\tau/\xi]}
\LabelRule{\exists}
\UnaRule{{}\vdash\Gamma,\exists\xi A}
\DisplayProof
\end{gather*}
with \(A\) and \(B\) arbitrary input or output formulas (under the
condition that the composite formulas containing them are input or
output formulas) and \(\xi\) not free in \(\Gamma\) in the rule
\(\forall\).
\begin{lemma}[Output formula]
If ${}\vdash\Gamma$ is provable in $LL_{12}$ and contains only input and output formulas, then $\Gamma$ contains exactly one output formula.
\end{lemma}
\begin{proof}
Assume $\Gamma_O$ is obtained by turning the output formulas of $\Gamma$ into $JLL$ formulas and $\Gamma_I$ is obtained by turning the dual of the input formulas of $\Gamma$ into $JLL$ formulas, $\Gamma_I\vdash\Gamma_O$ is provable in $LL_{12}$ thus in $JLL_{12}$. By \cref{uconcljll} (Unique conclusion in $JLL$), $\Gamma_O$ is a singleton, thus $\Gamma$ contains exactly one output formula.
\end{proof}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: