Skip to content

jorge-martinez-gil/codesim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Source Code Clone Detection Using Unsupervised Similarity Measures

This repository contains the source code for reproducing the paper Martinez-Gil, J. (2024). Source Code Clone Detection Using Unsupervised Similarity Measures. In: Bludau, P., Ramler, R., Winkler, D., Bergsmann, J. (eds) Software Quality as a Foundation for Security. SWQD 2024. Lecture Notes in Business Information Processing, vol 505. Springer, Cham. https://doi.org/10.1007/978-3-031-56281-5_2.

arXiv Springer Link

The dataset has been created by Oscar Karnalim: https://github.com/oscarkarnalim/sourcecodeplagiarismdataset

🌍 Overview

This project implements a collection of established methods for measuring similarity. In this context, the goal is to detect similarity (and subsequently identify code clones) in Java source code using unsupervised similarity measures. It aims to check the most promising unsupervised similarity measures to identify duplicates (a.k.a. clones) in source code efficiently, offering a valuable tool for software maintenance and plagiarism detection.

📚 Reference

If you use this work, please cite:

@InProceedings{10.1007/978-3-031-56281-5_2,
	author="Martinez-Gil, Jorge",
	editor="Bludau, Peter
	and Ramler, Rudolf
	and Winkler, Dietmar
	and Bergsmann, Johannes",
	title="Source Code Clone Detection Using Unsupervised Similarity Measures",
	booktitle="Software Quality as a Foundation for Security",
	year="2024",
	publisher="Springer Nature Switzerland",
	address="Cham",
	pages="21--37",
	isbn="978-3-031-56281-5"
}

🛠️ How it Works

Each script java-sim-*-opt.py processes the Java code snippets from the IR-Plag dataset. There are 21 different methods implemented. Please note that each script tries to find a threshold value for semantic similarity capable of separating clones from non-clones.

📈 Performance Results

Approach Script Accuracy Precision Recall F-Measure Execution Time (ms)
Abstract Syntax Tree java-sim-ast-opt.py 0.77 0.77 0.78 0.78 80907.37
Bag-of-Words java-sim-bow-opt.py 0.77 0.79 0.66 0.72 57444.90
Bag-of-Words II java-sim-bow2-opt.py 0.77 0.77 1.00 0.87 59961.69
CodeBERT java-sim-codebert-opt.py* 0.54 0.75 0.34 0.47 868755.96
Comment Sim. java-sim-comments-opt.py 0.77 0.77 1.00 0.87 983231.42
Output Analysis java-sim-exec-opt.py 0.94 0.85 0.97 0.90 1381335.16
Function Calls java-sim-fcall-opt.py 0.78 0.78 0.91 0.84 30303.88
Fuzzy Matching java-sim-fuzz-opt.py 0.77 0.77 1.00 0.87 12778.62
Graph Matching java-sim-graph-opt.py 0.78 0.80 0.52 0.63 65076.91
Rolling Hash java-sim-hash-opt.py 0.59 0.93 0.18 0.30 959157.60
Perceptual Hash java-sim-image-opt.py 0.77 0.77 0.85 0.81 38152.71
Jaccard java-sim-jaccard-opt.py 0.86 0.81 0.94 0.87 2066.13
Longest Common Subsequence java-sim-lcs-opt.py 0.48 0.74 0.06 0.11 7268.67
Levenshtein java-sim-lev-opt.py 0.77 0.80 0.66 0.72 10280.09
Metrics comparison java-sim-metrics-opt.py 0.77 0.77 1.00 0.87 60508.62
N-Grams java-sim-ngrams-opt.py 0.85 0.84 0.29 0.43 66635.25
Program Dependence Graph java-sim-pdg-opt.py 0.65 0.85 0.39 0.53 40518.80
Rabin-Karp java-sim-rk-opt.py 0.81 0.79 0.99 0.88 225218.76
Semantic Clone java-sim-semclone-opt.py 0.77 0.79 0.68 0.73 41543.53
Semdiff method java-sim-semdiff-opt.py 0.77 0.79 0.38 0.51 26351.06
TDF-IDF java-sim-tdf-opt.py 0.77 0.77 0.99 0.87 68587.17
Winnow java-sim-winn-opt.py 0.86 0.81 0.98 0.88 77160.81
Winnow II java-sim-winn2-opt.py 0.83 0.80 0.94 0.87 104032.99

*CodeBERT is used without recalibration

📄 License

These scripts are provided under the MIT License.