diff --git a/scipy-stubs/stats/_distribution_infrastructure.pyi b/scipy-stubs/stats/_distribution_infrastructure.pyi index a97dcef2..703c08ac 100644 --- a/scipy-stubs/stats/_distribution_infrastructure.pyi +++ b/scipy-stubs/stats/_distribution_infrastructure.pyi @@ -3,8 +3,8 @@ import abc from collections.abc import Callable, Mapping, Sequence, Set as AbstractSet -from typing import Any, ClassVar, Final, Generic, Literal as L, Protocol, TypeAlias, overload, type_check_only -from typing_extensions import LiteralString, Never, Self, TypeIs, TypeVar, override +from typing import Any, ClassVar, Final, Generic, Literal as L, Protocol, TypeAlias, TypedDict, overload, type_check_only +from typing_extensions import LiteralString, Never, Self, TypeIs, TypeVar, Unpack, override import numpy as np import optype as op @@ -14,42 +14,62 @@ from scipy._typing import AnyShape, ToRNG from ._distn_infrastructure import rv_continuous from ._probability_distribution import _BaseDistribution -# TODO: -# `__all__ = ["Mixture", "abs", "exp", "log", "make_distribution", "order_statistic", "truncate"] - -_Float: TypeAlias = np.float64 | np.longdouble -_FloatingT = TypeVar("_FloatingT", bound=np.floating[Any], default=np.floating[Any]) -_FloatingT_co = TypeVar("_FloatingT_co", bound=np.floating[Any], default=np.floating[Any], covariant=True) -_RealT = TypeVar("_RealT", bound=np.floating[Any] | np.integer[Any], default=np.floating[Any] | np.integer[Any]) -_RealT_co = TypeVar( - "_RealT_co", - bound=np.floating[Any] | np.integer[Any], - default=np.floating[Any] | np.integer[Any], - covariant=True, -) - -_ShapeT0 = TypeVar("_ShapeT0", bound=tuple[int, ...], default=tuple[int, ...]) +__all__ = ["Mixture", "abs", "exp", "log", "make_distribution", "order_statistic", "truncate"] + +### + +_FloatT = TypeVar("_FloatT", bound=_Float, default=_Float) +_FloatT_co = TypeVar("_FloatT_co", bound=_Float, default=_Float, covariant=True) + +_RealT = TypeVar("_RealT", bound=_Float | _Int, default=_Float | _Int) +_RealT_co = TypeVar("_RealT_co", bound=_Float | _Int, default=_Float | _Int, covariant=True) + _ShapeT1 = TypeVar("_ShapeT1", bound=onp.AtLeast1D, default=onp.AtLeast1D) -_ShapeT0_co = TypeVar("_ShapeT0_co", bound=tuple[int, ...], default=tuple[int, ...], covariant=True) - -_CDistT0 = TypeVar("_CDistT0", bound=_CDist0) -_CDistT1 = TypeVar("_CDistT1", bound=_CDist[tuple[int]]) -_CDistT_1 = TypeVar("_CDistT_1", bound=_CDist[onp.AtMost1D]) -_CDistT2 = TypeVar("_CDistT2", bound=_CDist[tuple[int, int]]) -_CDistT_2 = TypeVar("_CDistT_2", bound=_CDist[onp.AtMost2D]) -_CDistT3 = TypeVar("_CDistT3", bound=_CDist[tuple[int, int, int]]) -_CDistT_3 = TypeVar("_CDistT_3", bound=_CDist[onp.AtMost3D]) -_CDistT = TypeVar("_CDistT", bound=ContinuousDistribution) -_CDistT_co = TypeVar("_CDistT_co", bound=ContinuousDistribution, default=ContinuousDistribution, covariant=True) - -# placeholder for `matplotlib.axes.Axes` -_Axes: TypeAlias = object +_ShapeT = TypeVar("_ShapeT", bound=_ND, default=_ND) +_ShapeT_co = TypeVar("_ShapeT_co", bound=_ND, default=_ND, covariant=True) + +_DistT0 = TypeVar("_DistT0", bound=_CDist0) +_DistT1 = TypeVar("_DistT1", bound=_CDist[_1D]) +_DistT_1 = TypeVar("_DistT_1", bound=_CDist[onp.AtMost1D]) +_DistT2 = TypeVar("_DistT2", bound=_CDist[_2D]) +_DistT_2 = TypeVar("_DistT_2", bound=_CDist[onp.AtMost2D]) +_DistT3 = TypeVar("_DistT3", bound=_CDist[_3D]) +_DistT_3 = TypeVar("_DistT_3", bound=_CDist[onp.AtMost3D]) +_DistT = TypeVar("_DistT", bound=ContinuousDistribution) +_DistT_co = TypeVar("_DistT_co", bound=ContinuousDistribution, default=ContinuousDistribution, covariant=True) + _AxesT = TypeVar("_AxesT", bound=_Axes, default=Any) ### -_JustFloat: TypeAlias = opt.Just[float] | np.floating[Any] +_Int: TypeAlias = np.integer[Any] +_Float: TypeAlias = np.floating[Any] +_OutFloat: TypeAlias = np.float64 | np.longdouble + +_NT = TypeVar("_NT", default=int) +_0D: TypeAlias = tuple[()] # noqa: PYI042 +_1D: TypeAlias = tuple[_NT] # noqa: PYI042 +_2D: TypeAlias = tuple[_NT, _NT] # noqa: PYI042 +_3D: TypeAlias = tuple[_NT, _NT, _NT] # noqa: PYI042 +_ND: TypeAlias = tuple[_NT, ...] + +_To1D: TypeAlias = op.CanIndex | _1D[op.CanIndex] +_To2D: TypeAlias = _2D[op.CanIndex] +_To3D: TypeAlias = _3D[op.CanIndex] + +_ToFloatMax1D: TypeAlias = onp.ToFloatStrict1D | onp.ToFloat +_ToFloatMax2D: TypeAlias = onp.ToFloatStrict2D | _ToFloatMax1D +_ToFloatMax3D: TypeAlias = onp.ToFloatStrict3D | _ToFloatMax2D +_ToFloatMaxND: TypeAlias = onp.ToFloatND | onp.ToFloat + +_ToJustIntMax1D: TypeAlias = onp.ToJustIntStrict1D | onp.ToJustInt +_ToJustIntMax2D: TypeAlias = onp.ToJustIntStrict2D | _ToJustIntMax1D +_ToJustIntMax3D: TypeAlias = onp.ToJustIntStrict3D | _ToJustIntMax2D +_ToJustIntMaxND: TypeAlias = onp.ToJustIntND | onp.ToJustInt + +_JustFloat: TypeAlias = opt.Just[float] | _Float _Null: TypeAlias = opt.Just[object] +_Axes: TypeAlias = object # placeholder for `matplotlib.axes.Axes` _DomainRegion: TypeAlias = L["domain", "typical"] _DomainDrawType: TypeAlias = L["in", "out", "on", "nan"] @@ -58,30 +78,32 @@ _CachePolicy: TypeAlias = L["no_cache"] | None _PlotQuantity: TypeAlias = L["x", "pdf", "cdf", "ccdf", "icdf", "iccdf", "logpdf", "logcdf", "logccdf", "ilogcdf", "ilogccdf"] _SMomentMethod: TypeAlias = L["formula", "general", "transform", "normalize", "cache"] -_ParamValues: TypeAlias = Mapping[str, onp.ToFloat | onp.ToFloatND] -_ToDomain: TypeAlias = _Domain | tuple[onp.ToFloat | str, onp.ToFloat | str] +_ParamValues: TypeAlias = Mapping[str, _ToFloatMaxND] +_ToDomain: TypeAlias = tuple[onp.ToFloat | str, onp.ToFloat | str] +_ToTol: TypeAlias = opt.Just[float] | _Null _DrawProportions: TypeAlias = tuple[onp.ToFloat, onp.ToFloat, onp.ToFloat, onp.ToFloat] +_Elementwise: TypeAlias = Callable[[onp.ArrayND[np.float64]], onp.ArrayND[_FloatT]] -_CDist: TypeAlias = ContinuousDistribution[np.floating[Any], _ShapeT0] -_CDist0: TypeAlias = ContinuousDistribution[_FloatingT, tuple[()]] +_CDist: TypeAlias = ContinuousDistribution[_Float, _ShapeT] +_CDist0: TypeAlias = ContinuousDistribution[_FloatT, _0D] +_TransDist: TypeAlias = TransformedDistribution[_DistT, _FloatT, _ShapeT] +_LinDist: TypeAlias = ShiftedScaledDistribution[_DistT, _FloatT, _ShapeT] +_FoldDist: TypeAlias = FoldedDistribution[_DistT, _FloatT, _ShapeT] +_TruncDist: TypeAlias = TruncatedDistribution[_DistT, _ShapeT] @type_check_only -class _ParameterField(Protocol[_FloatingT_co, _ShapeT0_co]): +class _ParamField(Protocol[_FloatT_co, _ShapeT_co]): # This actually works (even on mypy)! @overload - def __get__( - self: _ParameterField[_FloatingT, tuple[()]], - instance: object, - owner: type | None = None, - /, - ) -> _FloatingT: ... + def __get__(self: _ParamField[_FloatT, _0D], obj: object, tp: type | None = None, /) -> _FloatT: ... @overload - def __get__( - self: _ParameterField[_FloatingT, _ShapeT1], - instance: object, - owner: type | None = None, - /, - ) -> onp.ArrayND[_FloatingT, _ShapeT1]: ... + def __get__(self: _ParamField[_FloatT, _ShapeT1], obj: object, tp: type | None = None, /) -> onp.Array[_ShapeT1, _FloatT]: ... + +@type_check_only +class _InitKwargs(TypedDict, total=False): + tol: _ToTol + validation_policy: _ValidationPolicy + cache_policy: _CachePolicy ### @@ -101,33 +123,22 @@ class _Domain(abc.ABC): @abc.abstractmethod def contains(self, /, x: onp.ArrayND[Any]) -> onp.ArrayND[np.bool_]: ... @abc.abstractmethod - def draw(self, /, n: int) -> onp.ArrayND[_FloatingT]: ... + def draw(self, /, n: int) -> onp.ArrayND[_FloatT]: ... @abc.abstractmethod - def get_numerical_endpoints(self, /, x: _ParamValues) -> tuple[onp.ArrayND[_Float], onp.ArrayND[_Float]]: ... + def get_numerical_endpoints(self, /, x: _ParamValues) -> tuple[onp.ArrayND[_OutFloat], onp.ArrayND[_OutFloat]]: ... # TODO(jorenham): Generic dtype class _SimpleDomain(_Domain, metaclass=abc.ABCMeta): - def __init__( - self, - /, - endpoints: tuple[onp.ToFloat | str, onp.ToFloat | str] = ..., - inclusive: tuple[bool, bool] = (False, False), - ) -> None: ... - - # + def __init__(self, /, endpoints: _ToDomain = ..., inclusive: tuple[bool, bool] = (False, False)) -> None: ... @override def __str__(self, /) -> str: ... # noqa: PYI029 @override - def get_numerical_endpoints( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] - self, - /, - parameter_values: _ParamValues, - ) -> tuple[onp.ArrayND[_Float], onp.ArrayND[_Float]]: ... + def get_numerical_endpoints(self, /, parameter_values: _ParamValues) -> _2D[onp.ArrayND[_OutFloat]]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] @override def contains( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] self, /, - item: onp.ArrayND[np.integer[Any] | np.floating[Any]], + item: onp.ArrayND[_Int | _Float], parameter_values: _ParamValues | None = None, ) -> onp.ArrayND[np.bool_]: ... @@ -141,32 +152,38 @@ class _RealDomain(_SimpleDomain): /, n: int, type_: _DomainDrawType, - min: onp.ArrayND[np.floating[Any] | np.integer[Any]], - max: onp.ArrayND[np.floating[Any] | np.integer[Any]], - squeezed_base_shape: tuple[int, ...], + min: onp.ArrayND[_Float | _Int], + max: onp.ArrayND[_Float | _Int], + squeezed_base_shape: _ND, rng: ToRNG = None, ) -> onp.ArrayND[np.float64]: ... -_ParamValidated0D: TypeAlias = tuple[_RealT, np.dtype[_RealT], onp.Array0D[np.bool_]] -_ParamValidatedND: TypeAlias = tuple[onp.ArrayND[_RealT, _ShapeT1], np.dtype[_RealT], onp.ArrayND[np.bool_, _ShapeT1]] +_ValidateOut0D: TypeAlias = tuple[_RealT, np.dtype[_RealT], onp.Array0D[np.bool_]] +_ValidateOutND: TypeAlias = tuple[onp.ArrayND[_RealT, _ShapeT1], np.dtype[_RealT], onp.ArrayND[np.bool_, _ShapeT1]] # class _Parameter(abc.ABC, Generic[_RealT_co]): - def __init__(self, /, name: str, *, domain: _Domain, symbol: str | None = None, typical: _ToDomain | None = None) -> None: ... - + def __init__( + self, + /, + name: str, + *, + domain: _Domain, + symbol: str | None = None, + typical: _Domain | _ToDomain | None = None, + ) -> None: ... # @overload @abc.abstractmethod - def validate(self, /, arr: onp.ToFloat) -> _ParamValidated0D[_RealT_co]: ... + def validate(self, /, arr: onp.ToFloat) -> _ValidateOut0D[_RealT_co]: ... @overload @abc.abstractmethod - def validate(self, /, arr: onp.ToFloatND) -> _ParamValidatedND[_RealT_co]: ... - + def validate(self, /, arr: onp.ToFloatND) -> _ValidateOutND[_RealT_co]: ... # def draw( self, /, - size: tuple[int, ...] | None = None, + size: _ND | None = None, *, rng: ToRNG = None, region: _DomainRegion = "domain", @@ -174,11 +191,11 @@ class _Parameter(abc.ABC, Generic[_RealT_co]): parameter_values: _ParamValues | None = None, ) -> onp.ArrayND[_RealT_co]: ... -class _RealParameter(_Parameter[_FloatingT_co], Generic[_FloatingT_co]): +class _RealParameter(_Parameter[_FloatT_co], Generic[_FloatT_co]): @overload # type: ignore[override] - def validate(self, /, arr: onp.ToFloat, parameter_values: _ParamValues) -> _ParamValidated0D[_FloatingT_co]: ... + def validate(self, /, arr: onp.ToFloat, parameter_values: _ParamValues) -> _ValidateOut0D[_FloatT_co]: ... @overload - def validate(self, /, arr: onp.ToFloatND, parameter_values: _ParamValues) -> _ParamValidatedND[_FloatingT_co]: ... # pyright: ignore[reportIncompatibleMethodOverride] + def validate(self, /, arr: onp.ToFloatND, parameter_values: _ParamValues) -> _ValidateOutND[_FloatT_co]: ... # pyright: ignore[reportIncompatibleMethodOverride] class _Parameterization: parameters: Final[Mapping[str, _Parameter]] @@ -187,26 +204,24 @@ class _Parameterization: def __len__(self, /) -> int: ... def copy(self, /) -> Self: ... def matches(self, /, parameters: AbstractSet[str]) -> bool: ... - def validation( - self, /, parameter_values: Mapping[str, _Parameter] - ) -> tuple[onp.ArrayND[np.bool_], np.dtype[np.floating[Any]]]: ... + def validation(self, /, parameter_values: Mapping[str, _Parameter]) -> tuple[onp.ArrayND[np.bool_], np.dtype[_Float]]: ... def draw( self, /, - sizes: tuple[int, ...] | Sequence[tuple[int, ...]] | None = None, + sizes: _ND | Sequence[_ND] | None = None, rng: ToRNG = None, proportions: _DrawProportions | None = None, region: _DomainRegion = "domain", - ) -> dict[str, onp.ArrayND[np.floating[Any]]]: ... + ) -> dict[str, onp.ArrayND[_Float]]: ... ### -class ContinuousDistribution(_BaseDistribution[_FloatingT_co, _ShapeT0_co], Generic[_FloatingT_co, _ShapeT0_co]): +class ContinuousDistribution(_BaseDistribution[_FloatT_co, _ShapeT_co], Generic[_FloatT_co, _ShapeT_co]): __array_priority__: ClassVar[float] = 1 _parameterizations: ClassVar[Sequence[_Parameterization]] _not_implemented: Final[str] - _original_parameters: dict[str, _FloatingT_co | onp.ArrayND[_FloatingT_co, _ShapeT0_co]] + _original_parameters: dict[str, _FloatT_co | onp.ArrayND[_FloatT_co, _ShapeT_co]] _variable: _Parameter @@ -224,139 +239,102 @@ class ContinuousDistribution(_BaseDistribution[_FloatingT_co, _ShapeT0_co], Gene def cache_policy(self, /) -> _CachePolicy: ... @cache_policy.setter def cache_policy(self, cache_policy: _CachePolicy, /) -> None: ... - # def __init__( self, /, *, - tol: opt.Just[float] | _Null = ..., + tol: _ToTol = ..., validation_policy: _ValidationPolicy = None, cache_policy: _CachePolicy = None, ) -> None: ... - - # - def __neg__(self, /) -> ShiftedScaledDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... - def __abs__(self, /) -> FoldedDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... + def __neg__(self, /) -> _LinDist[Self, _FloatT_co, _ShapeT_co]: ... + def __abs__(self, /) -> _FoldDist[Self, _FloatT_co, _ShapeT_co]: ... # @overload - def __add__( - self, rshift: float | np.integer[Any] | np.bool_, / - ) -> ShiftedScaledDistribution[Self, np.float64 | _FloatingT_co, _ShapeT0_co]: ... + def __add__(self, x: float | _Int | np.bool_, /) -> _LinDist[Self, np.float64 | _FloatT_co, _ShapeT_co]: ... @overload - def __add__(self, rshift: _FloatingT, /) -> ShiftedScaledDistribution[Self, _FloatingT | _FloatingT_co, _ShapeT0_co]: ... + def __add__(self, x: _FloatT, /) -> _LinDist[Self, _FloatT | _FloatT_co, _ShapeT_co]: ... @overload - def __add__(self, rshift: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, np.floating[Any], _ShapeT0_co]: ... + def __add__(self, x: onp.ToFloat, /) -> _LinDist[Self, _Float, _ShapeT_co]: ... @overload - def __add__( - self: _CDistT0, rshift: onp.CanArrayND[_FloatingT, _ShapeT0], / - ) -> ShiftedScaledDistribution[_CDistT0, _FloatingT | _FloatingT_co, _ShapeT0]: ... + def __add__(self: _DistT0, x: onp.CanArrayND[_FloatT, _ShapeT], /) -> _LinDist[_DistT0, _FloatT | _FloatT_co, _ShapeT]: ... @overload - def __add__( - self: _CDistT_1, rshift: onp.ToFloatStrict1D, / - ) -> ShiftedScaledDistribution[_CDistT_1, np.floating[Any], tuple[int]]: ... + def __add__(self: _DistT_1, x: onp.ToFloatStrict1D, /) -> _LinDist[_DistT_1, _Float, _1D]: ... @overload - def __add__( - self: _CDistT_2, rshift: onp.ToFloatStrict2D, / - ) -> ShiftedScaledDistribution[_CDistT_2, np.floating[Any], tuple[int, int]]: ... + def __add__(self: _DistT_2, x: onp.ToFloatStrict2D, /) -> _LinDist[_DistT_2, _Float, _2D]: ... @overload - def __add__( - self: _CDistT_3, rshift: onp.ToFloatStrict3D, / - ) -> ShiftedScaledDistribution[_CDistT_3, np.floating[Any], tuple[int, int, int]]: ... + def __add__(self: _DistT_3, x: onp.ToFloatStrict3D, /) -> _LinDist[_DistT_3, _Float, _3D]: ... @overload - def __add__(self, rshift: onp.ToFloatND, /) -> ShiftedScaledDistribution[Self]: ... + def __add__(self, x: onp.ToFloatND, /) -> _LinDist[Self]: ... __radd__ = __add__ # @overload - def __sub__( - self, lshift: float | np.integer[Any] | np.bool_, / - ) -> ShiftedScaledDistribution[Self, np.float64 | _FloatingT_co, _ShapeT0_co]: ... + def __sub__(self, lshift: float | _Int | np.bool_, /) -> _LinDist[Self, np.float64 | _FloatT_co, _ShapeT_co]: ... @overload - def __sub__(self, lshift: _FloatingT, /) -> ShiftedScaledDistribution[Self, _FloatingT | _FloatingT_co, _ShapeT0_co]: ... + def __sub__(self, lshift: _FloatT, /) -> _LinDist[Self, _FloatT | _FloatT_co, _ShapeT_co]: ... @overload - def __sub__(self, lshift: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, np.floating[Any], _ShapeT0_co]: ... + def __sub__(self, lshift: onp.ToFloat, /) -> _LinDist[Self, _Float, _ShapeT_co]: ... @overload def __sub__( - self: _CDistT0, lshift: onp.CanArrayND[_FloatingT, _ShapeT0], / - ) -> ShiftedScaledDistribution[_CDistT0, _FloatingT | _FloatingT_co, _ShapeT0]: ... + self: _DistT0, lshift: onp.CanArrayND[_FloatT, _ShapeT], / + ) -> _LinDist[_DistT0, _FloatT | _FloatT_co, _ShapeT]: ... @overload - def __sub__( - self: _CDistT_1, lshift: onp.ToFloatStrict1D, / - ) -> ShiftedScaledDistribution[_CDistT_1, np.floating[Any], tuple[int]]: ... + def __sub__(self: _DistT_1, lshift: onp.ToFloatStrict1D, /) -> _LinDist[_DistT_1, _Float, _1D]: ... @overload - def __sub__( - self: _CDistT_2, lshift: onp.ToFloatStrict2D, / - ) -> ShiftedScaledDistribution[_CDistT_2, np.floating[Any], tuple[int, int]]: ... + def __sub__(self: _DistT_2, lshift: onp.ToFloatStrict2D, /) -> _LinDist[_DistT_2, _Float, _2D]: ... @overload - def __sub__( - self: _CDistT_3, lshift: onp.ToFloatStrict3D, / - ) -> ShiftedScaledDistribution[_CDistT_3, np.floating[Any], tuple[int, int, int]]: ... + def __sub__(self: _DistT_3, lshift: onp.ToFloatStrict3D, /) -> _LinDist[_DistT_3, _Float, _3D]: ... @overload - def __sub__(self, lshift: onp.ToFloatND, /) -> ShiftedScaledDistribution[Self]: ... + def __sub__(self, lshift: onp.ToFloatND, /) -> _LinDist[Self]: ... __rsub__ = __sub__ # @overload - def __mul__( - self, scale: float | np.integer[Any] | np.bool_, / - ) -> ShiftedScaledDistribution[Self, np.float64 | _FloatingT_co, _ShapeT0_co]: ... + def __mul__(self, scale: float | _Int | np.bool_, /) -> _LinDist[Self, np.float64 | _FloatT_co, _ShapeT_co]: ... @overload - def __mul__(self, scale: _FloatingT, /) -> ShiftedScaledDistribution[Self, _FloatingT | _FloatingT_co, _ShapeT0_co]: ... + def __mul__(self, scale: _FloatT, /) -> _LinDist[Self, _FloatT | _FloatT_co, _ShapeT_co]: ... @overload - def __mul__(self, scale: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, np.floating[Any], _ShapeT0_co]: ... + def __mul__(self, scale: onp.ToFloat, /) -> _LinDist[Self, _Float, _ShapeT_co]: ... @overload def __mul__( - self: _CDistT0, scale: onp.CanArrayND[_FloatingT, _ShapeT0], / - ) -> ShiftedScaledDistribution[_CDistT0, _FloatingT | _FloatingT_co, _ShapeT0]: ... + self: _DistT0, scale: onp.CanArrayND[_FloatT, _ShapeT], / + ) -> _LinDist[_DistT0, _FloatT | _FloatT_co, _ShapeT]: ... @overload - def __mul__( - self: _CDistT_1, scale: onp.ToFloatStrict1D, / - ) -> ShiftedScaledDistribution[_CDistT_1, np.floating[Any], tuple[int]]: ... + def __mul__(self: _DistT_1, scale: onp.ToFloatStrict1D, /) -> _LinDist[_DistT_1, _Float, _1D]: ... @overload - def __mul__( - self: _CDistT_2, scale: onp.ToFloatStrict2D, / - ) -> ShiftedScaledDistribution[_CDistT_2, np.floating[Any], tuple[int, int]]: ... + def __mul__(self: _DistT_2, scale: onp.ToFloatStrict2D, /) -> _LinDist[_DistT_2, _Float, _2D]: ... @overload - def __mul__( - self: _CDistT_3, scale: onp.ToFloatStrict3D, / - ) -> ShiftedScaledDistribution[_CDistT_3, np.floating[Any], tuple[int, int, int]]: ... + def __mul__(self: _DistT_3, scale: onp.ToFloatStrict3D, /) -> _LinDist[_DistT_3, _Float, _3D]: ... @overload - def __mul__(self, scale: onp.ToFloatND, /) -> ShiftedScaledDistribution[Self]: ... + def __mul__(self, scale: onp.ToFloatND, /) -> _LinDist[Self]: ... __rmul__ = __mul__ # @overload - def __truediv__( - self, iscale: float | np.integer[Any] | np.bool_, / - ) -> ShiftedScaledDistribution[Self, np.float64 | _FloatingT_co, _ShapeT0_co]: ... + def __truediv__(self, iscale: float | _Int | np.bool_, /) -> _LinDist[Self, np.float64 | _FloatT_co, _ShapeT_co]: ... @overload - def __truediv__(self, iscale: _FloatingT, /) -> ShiftedScaledDistribution[Self, _FloatingT | _FloatingT_co, _ShapeT0_co]: ... + def __truediv__(self, iscale: _FloatT, /) -> _LinDist[Self, _FloatT | _FloatT_co, _ShapeT_co]: ... @overload - def __truediv__(self, iscale: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, np.floating[Any], _ShapeT0_co]: ... + def __truediv__(self, iscale: onp.ToFloat, /) -> _LinDist[Self, _Float, _ShapeT_co]: ... @overload def __truediv__( - self: _CDistT0, iscale: onp.CanArrayND[_FloatingT, _ShapeT0], / - ) -> ShiftedScaledDistribution[_CDistT0, _FloatingT | _FloatingT_co, _ShapeT0]: ... + self: _DistT0, iscale: onp.CanArrayND[_FloatT, _ShapeT], / + ) -> _LinDist[_DistT0, _FloatT | _FloatT_co, _ShapeT]: ... @overload - def __truediv__( - self: _CDistT_1, iscale: onp.ToFloatStrict1D, / - ) -> ShiftedScaledDistribution[_CDistT_1, np.floating[Any], tuple[int]]: ... + def __truediv__(self: _DistT_1, iscale: onp.ToFloatStrict1D, /) -> _LinDist[_DistT_1, _Float, _1D]: ... @overload - def __truediv__( - self: _CDistT_2, iscale: onp.ToFloatStrict2D, / - ) -> ShiftedScaledDistribution[_CDistT_2, np.floating[Any], tuple[int, int]]: ... + def __truediv__(self: _DistT_2, iscale: onp.ToFloatStrict2D, /) -> _LinDist[_DistT_2, _Float, _2D]: ... @overload - def __truediv__( - self: _CDistT_3, iscale: onp.ToFloatStrict3D, / - ) -> ShiftedScaledDistribution[_CDistT_3, np.floating[Any], tuple[int, int, int]]: ... + def __truediv__(self: _DistT_3, iscale: onp.ToFloatStrict3D, /) -> _LinDist[_DistT_3, _Float, _3D]: ... @overload - def __truediv__(self, iscale: onp.ToFloatND, /) -> ShiftedScaledDistribution[Self]: ... + def __truediv__(self, iscale: onp.ToFloatND, /) -> _LinDist[Self]: ... __rtruediv__ = __truediv__ # - def __pow__(self, exp: onp.ToInt, /) -> MonotonicTransformedDistribution[Self, _ShapeT0_co]: ... + def __pow__(self, exp: onp.ToInt, /) -> MonotonicTransformedDistribution[Self, _ShapeT_co]: ... __rpow__ = __pow__ # @@ -373,427 +351,288 @@ class ContinuousDistribution(_BaseDistribution[_FloatingT_co, _ShapeT0_co], Gene # # NOTE: This will be removed in 1.15.0rc2, see https://github.com/scipy/scipy/pull/22149 @overload - def llf(self, sample: onp.ToFloat | onp.ToFloatND, /, *, axis: None) -> _Float: ... + def llf(self, sample: _ToFloatMaxND, /, *, axis: None) -> _OutFloat: ... @overload - def llf(self: _CDist0, sample: onp.ToFloat | onp.ToFloatStrict1D, /, *, axis: AnyShape | None = -1) -> _Float: ... + def llf(self: _CDist0, sample: _ToFloatMax1D, /, *, axis: AnyShape | None = -1) -> _OutFloat: ... @overload - def llf( - self: _CDist[_ShapeT1], sample: onp.ToFloat | onp.ToFloatStrict1D, /, *, axis: AnyShape = -1 - ) -> onp.ArrayND[_Float, _ShapeT1]: ... + def llf(self: _CDist[_ShapeT1], sample: _ToFloatMax1D, /, *, axis: AnyShape = -1) -> onp.ArrayND[_OutFloat, _ShapeT1]: ... @overload - def llf( - self: _CDist0, sample: onp.ToFloatStrict2D, /, *, axis: op.CanIndex | tuple[op.CanIndex] = -1 - ) -> onp.Array1D[_Float]: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict2D, /, *, axis: _To1D = -1) -> onp.Array1D[_OutFloat]: ... @overload - def llf(self: _CDist0, sample: onp.ToFloatStrict2D, /, *, axis: tuple[op.CanIndex, op.CanIndex]) -> _Float: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict2D, /, *, axis: _To2D) -> _OutFloat: ... @overload - def llf( - self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: op.CanIndex | tuple[op.CanIndex] = -1 - ) -> onp.Array2D[_Float]: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: _To1D = -1) -> onp.Array2D[_OutFloat]: ... @overload - def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: tuple[op.CanIndex, op.CanIndex]) -> onp.Array1D[_Float]: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: _To2D) -> onp.Array1D[_OutFloat]: ... @overload - def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: tuple[op.CanIndex, op.CanIndex, op.CanIndex]) -> _Float: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: _To3D) -> _OutFloat: ... @overload def llf( - self: _CDist[_ShapeT1], sample: onp.ToFloat | onp.ToFloatND, /, *, axis: AnyShape = -1 - ) -> onp.Array[_ShapeT1, _Float] | onp.ArrayND[_Float]: ... # the first union type is needed on numpy <2.1 + self: _CDist[_ShapeT1], sample: _ToFloatMaxND, /, *, axis: AnyShape = -1 + ) -> onp.Array[_ShapeT1, _OutFloat] | onp.ArrayND[_OutFloat]: ... # the first union type is needed on numpy <2.1 @overload - def llf(self, sample: onp.ToFloat | onp.ToFloatND, /, *, axis: AnyShape | None = -1) -> _Float | onp.ArrayND[_Float]: ... - -_ElementwiseFunction: TypeAlias = Callable[[onp.ArrayND[np.float64]], onp.ArrayND[_FloatingT]] + def llf(self, sample: _ToFloatMaxND, /, *, axis: AnyShape | None = -1) -> _OutFloat | onp.ArrayND[_OutFloat]: ... # 7 years of asking and >400 upvotes, but still no higher-kinded typing support: https://github.com/python/typing/issues/548 -class TransformedDistribution( - ContinuousDistribution[_FloatingT_co, _ShapeT0_co], - Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], -): - _dist: _CDistT_co # readonly +class TransformedDistribution(ContinuousDistribution[_FloatT_co, _ShapeT_co], Generic[_DistT_co, _FloatT_co, _ShapeT_co]): + _dist: _DistT_co # readonly def __init__( - self: TransformedDistribution[ContinuousDistribution[_FloatingT, _ShapeT0], _FloatingT, _ShapeT0], # nice trick, eh? - X: _CDistT_co, + self: _TransDist[ContinuousDistribution[_FloatT, _ShapeT], _FloatT, _ShapeT], # nice trick, eh? + X: _DistT_co, /, *args: Never, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + **kwargs: Unpack[_InitKwargs], ) -> None: ... -class ShiftedScaledDistribution( - TransformedDistribution[_CDistT_co, _FloatingT_co, _ShapeT0_co], - Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], -): +class ShiftedScaledDistribution(_TransDist[_DistT_co, _FloatT_co, _ShapeT_co], Generic[_DistT_co, _FloatT_co, _ShapeT_co]): _loc_domain: ClassVar[_RealDomain] = ... _loc_param: ClassVar[_RealParameter] = ... - _scale_domain: ClassVar[_RealDomain] = ... _scale_param: ClassVar[_RealParameter] = ... - loc: _ParameterField[_FloatingT_co, _ShapeT0_co] - scale: _ParameterField[_FloatingT_co, _ShapeT0_co] + loc: _ParamField[_FloatT_co, _ShapeT_co] + scale: _ParamField[_FloatT_co, _ShapeT_co] # TODO(jorenham): override `__[r]{add,sub,mul,truediv}__` so that it returns a `Self` (but maybe with different shape) -class FoldedDistribution( - TransformedDistribution[_CDistT_co, _FloatingT_co, _ShapeT0_co], - Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], -): +class FoldedDistribution(_TransDist[_DistT_co, _FloatT_co, _ShapeT_co], Generic[_DistT_co, _FloatT_co, _ShapeT_co]): @overload - def __init__( - self: FoldedDistribution[_CDistT0, np.floating[Any], tuple[()]], - X: _CDistT0, - /, - *args: Never, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, - ) -> None: ... + def __init__(self: _FoldDist[_DistT0, _Float, _0D], X: _DistT0, /, *args: Never, **kwargs: Unpack[_InitKwargs]) -> None: ... @overload - def __init__( - self: FoldedDistribution[_CDistT1, np.floating[Any], tuple[int]], - X: _CDistT1, - /, - *args: Never, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, - ) -> None: ... + def __init__(self: _FoldDist[_DistT1, _Float, _1D], X: _DistT1, /, *args: Never, **kwargs: Unpack[_InitKwargs]) -> None: ... @overload - def __init__( - self: FoldedDistribution[_CDistT2, np.floating[Any], tuple[int, int]], - X: _CDistT2, - /, - *args: Never, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, - ) -> None: ... + def __init__(self: _FoldDist[_DistT2, _Float, _2D], X: _DistT2, /, *args: Never, **kwargs: Unpack[_InitKwargs]) -> None: ... @overload - def __init__( - self: FoldedDistribution[_CDistT3, np.floating[Any], tuple[int, int, int]], - X: _CDistT3, - /, - *args: Never, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, - ) -> None: ... + def __init__(self: _FoldDist[_DistT3, _Float, _3D], X: _DistT3, /, *args: Never, **kwargs: Unpack[_InitKwargs]) -> None: ... @overload - def __init__( - self: FoldedDistribution[_CDistT, np.floating[Any], tuple[int, ...]], - X: _CDistT, - /, - *args: Never, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, - ) -> None: ... + def __init__(self: _FoldDist[_DistT, _Float, _ND], X: _DistT, /, *args: Never, **kwargs: Unpack[_InitKwargs]) -> None: ... -class TruncatedDistribution( - TransformedDistribution[_CDistT_co, np.floating[Any], _ShapeT0_co], - Generic[_CDistT_co, _ShapeT0_co], -): +class TruncatedDistribution(_TransDist[_DistT_co, _Float, _ShapeT_co], Generic[_DistT_co, _ShapeT_co]): _lb_domain: ClassVar[_RealDomain] = ... _lb_param: ClassVar[_RealParameter] = ... - _ub_domain: ClassVar[_RealDomain] = ... _ub_param: ClassVar[_RealParameter] = ... - lb: _ParameterField[np.floating[Any], _ShapeT0_co] - ub: _ParameterField[np.floating[Any], _ShapeT0_co] + lb: _ParamField[_Float, _ShapeT_co] + ub: _ParamField[_Float, _ShapeT_co] @overload def __init__( - self: TruncatedDistribution[_CDistT0, tuple[()]], - X: _CDistT0, + self: _TruncDist[_DistT0, _0D], + X: _DistT0, /, *args: Never, lb: onp.ToFloat = ..., ub: onp.ToFloat = ..., - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_CDistT1, tuple[int]], - X: _CDistT1, + self: _TruncDist[_DistT1, _1D], + X: _DistT1, /, *args: Never, - lb: onp.ToFloat | onp.ToFloatStrict1D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D = ..., - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + lb: _ToFloatMax1D = ..., + ub: _ToFloatMax1D = ..., + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_CDistT2, tuple[int, int]], - X: _CDistT2, + self: _TruncDist[_DistT2, _2D], + X: _DistT2, /, *args: Never, - lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + lb: _ToFloatMax2D = ..., + ub: _ToFloatMax2D = ..., + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_CDistT3, tuple[int, int, int]], - X: _CDistT3, + self: _TruncDist[_DistT3, _3D], + X: _DistT3, /, *args: Never, - lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + lb: _ToFloatMax3D = ..., + ub: _ToFloatMax3D = ..., + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_CDistT, tuple[int, ...]], - X: _CDistT, + self: _TruncDist[_DistT, _ND], + X: _DistT, /, *args: Never, - lb: onp.ToFloat | onp.ToFloatND = ..., - ub: onp.ToFloat | onp.ToFloatND = ..., - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + lb: _ToFloatMaxND = ..., + ub: _ToFloatMaxND = ..., + **kwargs: Unpack[_InitKwargs], ) -> None: ... # always float64 or longdouble -class OrderStatisticDistribution(TransformedDistribution[_CDistT_co, _Float, _ShapeT0_co], Generic[_CDistT_co, _ShapeT0_co]): +class OrderStatisticDistribution(_TransDist[_DistT_co, _OutFloat, _ShapeT_co], Generic[_DistT_co, _ShapeT_co]): # these should actually be integral; but the `_IntegerDomain` isn't finished yet _r_domain: ClassVar[_RealDomain] = ... _r_param: ClassVar[_RealParameter] = ... - _n_domain: ClassVar[_RealDomain] = ... _n_param: ClassVar[_RealParameter] = ... @overload def __init__( - self: OrderStatisticDistribution[_CDistT0, tuple[()]], - dist: _CDistT0, + self: OrderStatisticDistribution[_DistT0, _0D], + dist: _DistT0, /, *args: Never, r: onp.ToJustInt, n: onp.ToJustInt, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: OrderStatisticDistribution[_CDistT1, tuple[int]], - dist: _CDistT1, + self: OrderStatisticDistribution[_DistT1, _1D], + dist: _DistT1, /, *args: Never, - r: onp.ToJustInt | onp.ToJustIntStrict1D, - n: onp.ToJustInt | onp.ToJustIntStrict1D, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + r: _ToJustIntMax1D, + n: _ToJustIntMax1D, + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: OrderStatisticDistribution[_CDistT2, tuple[int, int]], - dist: _CDistT2, + self: OrderStatisticDistribution[_DistT2, _2D], + dist: _DistT2, /, *args: Never, - r: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D, - n: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + r: _ToJustIntMax2D, + n: _ToJustIntMax2D, + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: OrderStatisticDistribution[_CDistT3, tuple[int, int, int]], - dist: _CDistT3, + self: OrderStatisticDistribution[_DistT3, _3D], + dist: _DistT3, /, *args: Never, - r: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D | onp.ToJustIntStrict3D, - n: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D | onp.ToJustIntStrict3D, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + r: _ToJustIntMax3D, + n: _ToJustIntMax3D, + **kwargs: Unpack[_InitKwargs], ) -> None: ... @overload def __init__( - self: OrderStatisticDistribution[_CDistT, tuple[int, ...]], - X: _CDistT, + self: OrderStatisticDistribution[_DistT, _ND], + X: _DistT, /, *args: Never, - r: onp.ToJustInt | onp.ToJustIntND, - n: onp.ToJustInt | onp.ToJustIntND, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + r: _ToJustIntMaxND, + n: _ToJustIntMaxND, + **kwargs: Unpack[_InitKwargs], ) -> None: ... # without HKT there's no reasonable way tot determine the floating scalar type -class MonotonicTransformedDistribution( - TransformedDistribution[_CDistT_co, np.floating[Any], _ShapeT0_co], - Generic[_CDistT_co, _ShapeT0_co], -): - _g: Final[_ElementwiseFunction] - _h: Final[_ElementwiseFunction] - _dh: Final[_ElementwiseFunction] - _logdh: Final[_ElementwiseFunction] +class MonotonicTransformedDistribution(_TransDist[_DistT_co, _Float, _ShapeT_co], Generic[_DistT_co, _ShapeT_co]): + _g: Final[_Elementwise] + _h: Final[_Elementwise] + _dh: Final[_Elementwise] + _logdh: Final[_Elementwise] _increasing: Final[bool] _repr_pattern: Final[str] def __init__( - self: MonotonicTransformedDistribution[_CDist[_ShapeT0], _ShapeT0], - X: _CDistT_co, + self: MonotonicTransformedDistribution[_CDist[_ShapeT], _ShapeT], + X: _DistT_co, /, *args: Never, - g: _ElementwiseFunction, - h: _ElementwiseFunction, - dh: _ElementwiseFunction, - logdh: _ElementwiseFunction | None = None, + g: _Elementwise, + h: _Elementwise, + dh: _Elementwise, + logdh: _Elementwise | None = None, increasing: bool = True, repr_pattern: str | None = None, - tol: opt.Just[float] | _Null = ..., - validation_policy: _ValidationPolicy = None, - cache_policy: _CachePolicy = None, + **kwargs: Unpack[_InitKwargs], ) -> None: ... -class Mixture(_BaseDistribution[_FloatingT_co, tuple[()]], Generic[_FloatingT_co]): - _shape: tuple[()] - _dtype: np.dtype[_FloatingT_co] - _components: Sequence[_CDist0[_FloatingT_co]] - _weights: onp.Array1D[_FloatingT_co] +class Mixture(_BaseDistribution[_FloatT_co, _0D], Generic[_FloatT_co]): + _shape: _0D + _dtype: np.dtype[_FloatT_co] + _components: Sequence[_CDist0[_FloatT_co]] + _weights: onp.Array1D[_FloatT_co] validation_policy: None @property - def components(self, /) -> list[_CDist0[_FloatingT_co]]: ... + def components(self, /) -> list[_CDist0[_FloatT_co]]: ... @property - def weights(self, /) -> onp.Array1D[_FloatingT_co]: ... + def weights(self, /) -> onp.Array1D[_FloatT_co]: ... # - def __init__(self, /, components: Sequence[_CDist0[_FloatingT_co]], *, weights: onp.ToFloat1D | None = None) -> None: ... + def __init__(self, /, components: Sequence[_CDist0[_FloatT_co]], *, weights: onp.ToFloat1D | None = None) -> None: ... # @override - def kurtosis(self, /, *, method: _SMomentMethod | None = None) -> _Float: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def kurtosis(self, /, *, method: _SMomentMethod | None = None) -> _OutFloat: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] ### # still waiting on the intersection type PEP... + @overload -def truncate( - X: _CDistT0, - lb: onp.ToFloat = ..., - ub: onp.ToFloat = ..., -) -> TruncatedDistribution[_CDistT0, tuple[()]]: ... +def truncate(X: _DistT0, lb: onp.ToFloat = ..., ub: onp.ToFloat = ...) -> _TruncDist[_DistT0, _0D]: ... @overload -def truncate( - X: _CDistT1, - lb: onp.ToFloat | onp.ToFloatStrict1D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D = ..., -) -> TruncatedDistribution[_CDistT1, tuple[int]]: ... +def truncate(X: _DistT1, lb: _ToFloatMax1D = ..., ub: _ToFloatMax1D = ...) -> _TruncDist[_DistT1, _1D]: ... @overload -def truncate( - X: _CDistT2, - lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., -) -> TruncatedDistribution[_CDistT2, tuple[int, int]]: ... +def truncate(X: _DistT2, lb: _ToFloatMax2D = ..., ub: _ToFloatMax2D = ...) -> _TruncDist[_DistT2, _2D]: ... @overload -def truncate( - X: _CDistT3, - lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., -) -> TruncatedDistribution[_CDistT3, tuple[int, int, int]]: ... +def truncate(X: _DistT3, lb: _ToFloatMax3D = ..., ub: _ToFloatMax3D = ...) -> _TruncDist[_DistT3, _3D]: ... @overload -def truncate( - X: _CDistT, - lb: onp.ToFloat | onp.ToFloatND = ..., - ub: onp.ToFloat | onp.ToFloatND = ..., -) -> TruncatedDistribution[_CDistT, tuple[int, ...]]: ... +def truncate(X: _DistT, lb: _ToFloatMaxND = ..., ub: _ToFloatMaxND = ...) -> _TruncDist[_DistT, _ND]: ... # @overload -def order_statistic( - X: _CDistT0, - /, - *, - r: onp.ToJustInt, - n: onp.ToJustInt, -) -> OrderStatisticDistribution[_CDistT0, tuple[()]]: ... +def order_statistic(X: _DistT0, /, *, r: onp.ToJustInt, n: onp.ToJustInt) -> OrderStatisticDistribution[_DistT0, _0D]: ... @overload -def order_statistic( - X: _CDistT1, - /, - *, - r: onp.ToJustInt | onp.ToJustIntStrict1D, - n: onp.ToJustInt | onp.ToJustIntStrict1D, -) -> OrderStatisticDistribution[_CDistT1, tuple[int]]: ... +def order_statistic(X: _DistT1, /, *, r: _ToJustIntMax1D, n: _ToJustIntMax1D) -> OrderStatisticDistribution[_DistT1, _1D]: ... @overload -def order_statistic( - X: _CDistT2, - /, - *, - r: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D, - n: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D, -) -> OrderStatisticDistribution[_CDistT2, tuple[int, int]]: ... +def order_statistic(X: _DistT2, /, *, r: _ToJustIntMax2D, n: _ToJustIntMax2D) -> OrderStatisticDistribution[_DistT2, _2D]: ... @overload -def order_statistic( - X: _CDistT3, - /, - *, - r: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D | onp.ToJustIntStrict3D, - n: onp.ToJustInt | onp.ToJustIntStrict1D | onp.ToJustIntStrict2D | onp.ToJustIntStrict3D, -) -> OrderStatisticDistribution[_CDistT3, tuple[int, int, int]]: ... +def order_statistic(X: _DistT3, /, *, r: _ToJustIntMax3D, n: _ToJustIntMax3D) -> OrderStatisticDistribution[_DistT3, _3D]: ... @overload -def order_statistic( - X: _CDistT, - /, - *, - r: onp.ToJustInt | onp.ToJustIntND, - n: onp.ToJustInt | onp.ToJustIntND, -) -> OrderStatisticDistribution[_CDistT, tuple[int, ...]]: ... +def order_statistic(X: _DistT, /, *, r: _ToJustIntMaxND, n: _ToJustIntMaxND) -> OrderStatisticDistribution[_DistT, _ND]: ... # @overload -def abs(X: _CDistT0, /) -> FoldedDistribution[_CDistT0, np.floating[Any], tuple[()]]: ... +def abs(X: _DistT0, /) -> _FoldDist[_DistT0, _Float, _0D]: ... @overload -def abs(X: _CDistT1, /) -> FoldedDistribution[_CDistT1, np.floating[Any], tuple[int]]: ... +def abs(X: _DistT1, /) -> _FoldDist[_DistT1, _Float, _1D]: ... @overload -def abs(X: _CDistT2, /) -> FoldedDistribution[_CDistT2, np.floating[Any], tuple[int, int]]: ... +def abs(X: _DistT2, /) -> _FoldDist[_DistT2, _Float, _2D]: ... @overload -def abs(X: _CDistT3, /) -> FoldedDistribution[_CDistT3, np.floating[Any], tuple[int, int, int]]: ... +def abs(X: _DistT3, /) -> _FoldDist[_DistT3, _Float, _3D]: ... @overload -def abs(X: _CDistT, /) -> FoldedDistribution[_CDistT, np.floating[Any], tuple[int, ...]]: ... +def abs(X: _DistT, /) -> _FoldDist[_DistT, _Float, _ND]: ... # @overload -def exp(X: _CDistT0, /) -> MonotonicTransformedDistribution[_CDistT0, tuple[()]]: ... +def exp(X: _DistT0, /) -> MonotonicTransformedDistribution[_DistT0, _0D]: ... @overload -def exp(X: _CDistT1, /) -> MonotonicTransformedDistribution[_CDistT1, tuple[int]]: ... +def exp(X: _DistT1, /) -> MonotonicTransformedDistribution[_DistT1, _1D]: ... @overload -def exp(X: _CDistT2, /) -> MonotonicTransformedDistribution[_CDistT2, tuple[int, int]]: ... +def exp(X: _DistT2, /) -> MonotonicTransformedDistribution[_DistT2, _2D]: ... @overload -def exp(X: _CDistT3, /) -> MonotonicTransformedDistribution[_CDistT3, tuple[int, int, int]]: ... +def exp(X: _DistT3, /) -> MonotonicTransformedDistribution[_DistT3, _3D]: ... @overload -def exp(X: _CDistT, /) -> MonotonicTransformedDistribution[_CDistT, tuple[int, ...]]: ... +def exp(X: _DistT, /) -> MonotonicTransformedDistribution[_DistT, _ND]: ... # @overload -def log(X: _CDistT0, /) -> MonotonicTransformedDistribution[_CDistT0, tuple[()]]: ... +def log(X: _DistT0, /) -> MonotonicTransformedDistribution[_DistT0, _0D]: ... @overload -def log(X: _CDistT1, /) -> MonotonicTransformedDistribution[_CDistT1, tuple[int]]: ... +def log(X: _DistT1, /) -> MonotonicTransformedDistribution[_DistT1, _1D]: ... @overload -def log(X: _CDistT2, /) -> MonotonicTransformedDistribution[_CDistT2, tuple[int, int]]: ... +def log(X: _DistT2, /) -> MonotonicTransformedDistribution[_DistT2, _2D]: ... @overload -def log(X: _CDistT3, /) -> MonotonicTransformedDistribution[_CDistT3, tuple[int, int, int]]: ... +def log(X: _DistT3, /) -> MonotonicTransformedDistribution[_DistT3, _3D]: ... @overload -def log(X: _CDistT, /) -> MonotonicTransformedDistribution[_CDistT, tuple[int, ...]]: ... +def log(X: _DistT, /) -> MonotonicTransformedDistribution[_DistT, _ND]: ... # NOTE: These currently don't support >0-d parameters, and it looks like they always return float64, regardless of dtype @type_check_only -class CustomDistribution(ContinuousDistribution[np.float64, tuple[()]]): - _dtype: np.dtype[np.floating[Any]] # ignored +class CustomDistribution(ContinuousDistribution[np.float64, _0D]): + _dtype: np.dtype[_Float] # ignored def make_distribution(dist: rv_continuous) -> type[CustomDistribution]: ...