From 96163d4ba6601d45ccfcd83fd5873bc8c9b4e696 Mon Sep 17 00:00:00 2001 From: "P. Oscar Boykin" Date: Sun, 17 Mar 2024 15:01:22 -0700 Subject: [PATCH] Add property checks for Nat (#1175) --- test_workspace/Nat.bosatsu | 77 ++++++++++++++------ test_workspace/NumberProps.bosatsu | 111 +++++++++++++++++++++++++++++ test_workspace/Properties.bosatsu | 4 +- test_workspace/Rand.bosatsu | 6 +- 4 files changed, 174 insertions(+), 24 deletions(-) create mode 100644 test_workspace/NumberProps.bosatsu diff --git a/test_workspace/Nat.bosatsu b/test_workspace/Nat.bosatsu index f91374e15..b41872b48 100644 --- a/test_workspace/Nat.bosatsu +++ b/test_workspace/Nat.bosatsu @@ -1,37 +1,72 @@ package Bosatsu/Nat from Bosatsu/Predef import add as operator +, times as operator * -export Nat(), times2, add, mult, exp, to_Int, to_Nat, is_even, div2 +export Nat(), times2, add, sub_Nat, mult, exp, to_Int, to_Nat, is_even, div2, cmp_Nat # This is the traditional encoding of natural numbers # it is useful when you are iterating on all values enum Nat: Zero, Succ(prev: Nat) +def cmp_Nat(a: Nat, b: Nat) -> Comparison: + recur a: + case Zero: + match b: + case Zero: EQ + case _: LT + case Succ(n): + match b: + case Zero: GT + case Succ(m): cmp_Nat(n, m) + # This is an O(n) operation def times2(n: Nat) -> Nat: - recur n: - Zero: Zero - Succ(prev): - # 2*(n + 1) = 2*n + 1 + 1 - Succ(Succ(times2(prev))) + def loop(n: Nat, acc: Nat): + recur n: + Zero: acc + Succ(prev): + # 2*(n + 1) = 2*n + 1 + 1 + loop(prev, Succ(Succ(acc))) + loop(n, Zero) def add(n1: Nat, n2: Nat) -> Nat: - recur n1: - Zero: n2 - Succ(prev_n1): - match n2: - Zero: n1 - Succ(prev_n2): Succ(Succ(add(prev_n1, prev_n2))) - -# (n1 + 1) * (n2 + 1) = n1 * n2 + n1 + n2 + 1 + def loop(n1: Nat, n2: Nat): + recur n1: + Zero: n2 + Succ(prev_n1): loop(prev_n1, Succ(n2)) + + if n2 matches Zero: n1 + else: loop(n1, n2) + +def sub_Nat(n1: Nat, n2: Nat) -> Nat: + recur n2: + Zero: n1 + Succ(prev_n2): + # (n1 + 1) - (n2 + 1) == (n1 - n2) + match n1: + case Zero: Zero + case Succ(prev_n1): + sub_Nat(prev_n1, prev_n2) + def mult(n1: Nat, n2: Nat) -> Nat: - recur n1: - Zero: Zero - Succ(n1): - match n2: - Zero: Zero - Succ(n2): - Succ(mult(n1, n2).add(add(n1, n2))) + # return n1 * n2 + c + # note: (n1 + 1) * (n2 + 1) + c == + # n1 * n2 + (n1 + n2 + 1 + c) + def loop(n1: Nat, n2: Nat, c: Nat): + recur n1: + Zero: c + Succ(n1): + match n2: + Zero: c + Succ(n2): + c1 = Succ(add(add(n1, n2), c)) + loop(n1, n2, c1) + + # we repeatedly do add(n, m) + # where we keep stepping down by one on both sides. + # add is more efficient if the lhs is smaller + # so we check that first + if cmp_Nat(n1, n2) matches GT: loop(n2, n1, Zero) + else: loop(n1, n2, Zero) def is_even(n: Nat) -> Bool: def loop(n: Nat, res: Bool) -> Bool: diff --git a/test_workspace/NumberProps.bosatsu b/test_workspace/NumberProps.bosatsu new file mode 100644 index 000000000..6fafaebc2 --- /dev/null +++ b/test_workspace/NumberProps.bosatsu @@ -0,0 +1,111 @@ +package Bosatsu/NumberProps + +from Bosatsu/BinNat import (BinNat, toBinNat as int_to_BinNat) +from Bosatsu/Nat import (Nat, Zero as NZero, Succ as NSucc, to_Nat as int_to_Nat, is_even as is_even_Nat, + times2 as times2_Nat, div2 as div2_Nat, cmp_Nat, to_Int as nat_to_Int, add as add_Nat, + mult as mult_Nat, exp as exp_Nat, sub_Nat) +from Bosatsu/Properties import (Prop, suite_Prop, forall_Prop, run_Prop) +from Bosatsu/Rand import (Rand, from_pair, geometric_Int, int_range, map_Rand, prod_Rand) + +export (rand_Int, rand_Nat, rand_BinNat) + +# Property checks for Nat, BinNat, Int + +#external def todo(ignore: x) -> forall a. a + +rand_Int: Rand[Int] = from_pair(int_range(128), geometric_Int) +rand_Nat: Rand[Nat] = rand_Int.map_Rand(int_to_Nat) +rand_BinNat: Rand[BinNat] = rand_Int.map_Rand(int_to_BinNat) + +eq_Int = (a, b) -> a.cmp_Int(b) matches EQ + +int_props = suite_Prop( + "Int props", + [ + forall_Prop(prod_Rand(rand_Int, rand_Int), "divmod law", ((a, b)) -> ( + adivb = a.div(b) + amodb = a.mod_Int(b) + a1 = adivb.times(b).add(amodb) + Assertion(eq_Int(a1, a), "check") + )), + ] +) + +def cmp_Comparison(c1: Comparison, c2: Comparison) -> Comparison: + match c1: + case LT: + match c2: + case LT: EQ + case _: LT + case EQ: + match c2: + case LT: GT + case EQ: EQ + case GT: LT + case GT: + match c2: + case GT: EQ + case _: GT + +def exp_Int(base: Int, power: Int) -> Int: + int_loop(power, 1, (p, acc) -> (p.sub(1), acc.times(base))) + +small_rand_Nat: Rand[Nat] = int_range(7).map_Rand(int_to_Nat) + +nat_props = suite_Prop( + "Nat props", + [ + forall_Prop(rand_Nat, "if is_even(n) then times2(div2(n)) == n", n -> ( + if is_even_Nat(n): + n1 = times2_Nat(div2_Nat(n)) + Assertion(cmp_Nat(n1, n) matches EQ, "times2/div2") + else: + # we return the previous number + n1 = times2_Nat(div2_Nat(n)) + Assertion(cmp_Nat(NSucc(n1), n) matches EQ, "times2/div2") + )), + forall_Prop(prod_Rand(rand_Nat, rand_Nat), "cmp_Nat matches cmp_Int", ((n1, n2)) -> ( + cmp_n = cmp_Nat(n1, n2) + cmp_i = cmp_Int(n1.nat_to_Int(), n2.nat_to_Int()) + Assertion(cmp_Comparison(cmp_n, cmp_i) matches EQ, "cmp_Nat") + )), + forall_Prop(prod_Rand(rand_Nat, rand_Nat), "add homomorphism", ((n1, n2)) -> ( + n3 = add_Nat(n1, n2) + i3 = add(n1.nat_to_Int(), n2.nat_to_Int()) + Assertion(cmp_Int(n3.nat_to_Int(), i3) matches EQ, "add homomorphism") + )), + forall_Prop(prod_Rand(rand_Nat, rand_Nat), "sub_Nat homomorphism", ((n1, n2)) -> ( + n3 = sub_Nat(n1, n2) + i1 = n1.nat_to_Int() + i2 = n2.nat_to_Int() + match cmp_Int(i1, i2): + case EQ | GT: + i3 = sub(i1, i2) + Assertion(cmp_Int(n3.nat_to_Int(), i3) matches EQ, "sub_Nat homomorphism") + case LT: + Assertion(n3 matches NZero, "sub to zero") + )), + forall_Prop(prod_Rand(rand_Nat, rand_Nat), "mult homomorphism", ((n1, n2)) -> ( + n3 = mult_Nat(n1, n2) + i3 = times(n1.nat_to_Int(), n2.nat_to_Int()) + Assertion(cmp_Int(n3.nat_to_Int(), i3) matches EQ, "mult homomorphism") + )), + forall_Prop(prod_Rand(small_rand_Nat, small_rand_Nat), "exp homomorphism", ((n1, n2)) -> ( + n3 = exp_Nat(n1, n2) + i3 = exp_Int(n1.nat_to_Int(), n2.nat_to_Int()) + Assertion(cmp_Int(n3.nat_to_Int(), i3) matches EQ, "exp homomorphism") + )), + forall_Prop(rand_Nat, "times2 == x -> mult(2, x)", n -> ( + t2 = n.times2_Nat() + t2_2 = mult_Nat(n, NSucc(NSucc(NZero))) + Assertion(cmp_Nat(t2, t2_2) matches EQ, "times2 == mult(2, _)") + )), + ] +) + +all_props = [int_props, nat_props] + +seed = 123456 +test = TestSuite("properties", [ + run_Prop(p, 100, seed) for p in all_props +]) \ No newline at end of file diff --git a/test_workspace/Properties.bosatsu b/test_workspace/Properties.bosatsu index 182363db5..78f979d4d 100644 --- a/test_workspace/Properties.bosatsu +++ b/test_workspace/Properties.bosatsu @@ -73,5 +73,5 @@ all_props = suite_Prop( shift_unshift_law, positive_and_law, ]) - -all_laws = run_Prop(all_props, 100, 42) \ No newline at end of file + +test = run_Prop(all_props, 100, 42) \ No newline at end of file diff --git a/test_workspace/Rand.bosatsu b/test_workspace/Rand.bosatsu index 81a17d5ec..c364e9e86 100644 --- a/test_workspace/Rand.bosatsu +++ b/test_workspace/Rand.bosatsu @@ -7,7 +7,7 @@ from Bosatsu/BinNat import (BinNat, Zero as BZero, Odd, Even, next as next_BinNat, prev as prev_BinNat, toInt as binNat_to_Int) export (Rand, run_Rand, prod_Rand, map_Rand, flat_map_Rand, const_Rand, - int_range, sequence_Rand, bool_Rand, geometric_Int, from_pair, one_of) + int_range, nat_range, sequence_Rand, bool_Rand, geometric_Int, from_pair, one_of) struct State(s0: Int, s1: Int, s2: Int, s3: Int) struct UInt64(toInt: Int) @@ -171,6 +171,9 @@ def int_range(high: Int) -> Rand[Int]: resample(rand_Int, high, uint_count) else: const0 +def nat_range(high: Nat) -> Rand[Nat]: + int_range(nat_to_Int(high)).map_Rand(int_to_Nat) + def geometric(depth: Nat, acc: Int) -> Rand[Int]: recur depth: case Zero: const_Rand(acc) @@ -182,6 +185,7 @@ def geometric(depth: Nat, acc: Int) -> Rand[Int]: case False: geometric(prev, acc + 1) )) +# geometric distribution with mean 1 geometric_Int: Rand[Int] = geometric(nat30, 0) def len[a](list: List[a]) -> BinNat: