-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcopt_tree.h
672 lines (502 loc) · 19.5 KB
/
copt_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/*
* copt_tree.h
* fast-opt
*
*
*/
/* The MIT License
Copyright (c) 2013 John C. Mu.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef COPT_TREE_H
#define COPT_TREE_H
//#define DEBUG
//#define DEBUG_MAP
#include "general_utils.h"
#include "gamma_table.h"
#include "opt_utils.h"
#include "map_tree.h"
class ctree_node
{
private:
int count[2]; // number of points in this region for each type
// this tree is designed so that it is a DAG
// It is possible for branches to merge if the partitions are the same
// pointer -> dimensions -> cuts (always 2 cuts for now)
ctree_node*** children;
// essentially the number of dimensions
int num_children;
float lP; // conditional marginal likelihood of not coupling
float lphi; // conditional marginal for the OPT (combined sample)
void init(){
count[0] = -1;
count[1] = -1;
lP = -c::inf;
lphi = -c::inf;
children = NULL;
num_children = 0;
}
public:
ctree_node(){
init();
}
ctree_node(int num_children){
init();
this->num_children = num_children;
children = new ctree_node**[num_children];
for(int i = 0;i<num_children;i++){
children[i] = new ctree_node*[c::cuts];
for(int j = 0;j<c::cuts;j++){
children[i][j] = NULL;
}
}
}
~ctree_node(){
if(children == NULL) return;
for(int i = 0;i<num_children;i++){
delete [] children[i];
}
delete [] children;
}
bool is_leaf(){
return children == NULL;
}
void set_uniform(int depth){
lP = (abs(count[0])+abs(count[1])) * depth * c::l2;
lphi = lP;
}
// compute lPhi and lP
void compute_lPs(int depth, gamma_table& gt){
vector<double> lphi_list;
lphi_list.reserve(num_children+1);
// Base measure
int total_count = (abs(count[0])+abs(count[1]));
double max_val = (total_count * depth * c::l2) - (c::l2);
lphi_list.push_back (max_val);
// The random constants
// lambda, D([1/2,1/2]) and 1/2
double ld = -log(num_children) - c::lpi - c::l2;
for(int i = 0;i<num_children;i++){
// check for null
if(children[i][0] == NULL || children[i][1] == NULL){
cerr << "lphi NULL child!!! " << i << ',' << depth << '\n';
exit(2);
}
int child_1_count = abs(children[i][0]->get_count());
int child_2_count = abs(children[i][1]->get_count());
double val = ld;
val += children[i][0]->get_lphi();
val += children[i][1]->get_lphi();
val += gt.compute_lD2(total_count,child_1_count,child_2_count);
lphi_list.push_back(val);
if(val > max_val){
max_val = val;
}
}
lphi = max_val;
double sum = 0;
for(int i = 0;i<(num_children+1);i++){
sum += exp(lphi_list[i] - max_val);
}
if(sum > 0) lphi += log(sum);
// this is for the coupling case
max_val = lphi - c::l2;
lphi_list[0] = max_val;
// The random constants
// lambda, (D([1/2,1/2]))^2 and 1/2
ld = -log(num_children) - c::lpi - c::lpi - c::l2;
for(int i = 0;i<num_children;i++){
// check for null
if(children[i][0] == NULL || children[i][1] == NULL){
cerr << "clphi NULL child!!! " << i << ',' << depth << '\n';
exit(2);
}
int child_1_count[2];
children[i][0]->get_count(child_1_count);
int child_2_count[2];
children[i][1]->get_count(child_2_count);
child_1_count[0] = abs(child_1_count[0]);
child_1_count[1] = abs(child_1_count[1]);
child_2_count[0] = abs(child_2_count[0]);
child_2_count[1] = abs(child_2_count[1]);
double val = ld;
val += children[i][0]->get_lP();
val += children[i][1]->get_lP();
val += gt.compute_lD2(abs(count[0]),child_1_count[0],child_2_count[0]);
val += gt.compute_lD2(abs(count[1]),child_1_count[1],child_2_count[1]);
lphi_list[i+1] = val;
if(val > max_val){
max_val = val;
}
}
lP = max_val;
sum = 0;
for(int i = 0;i<(num_children+1);i++){
sum += exp(lphi_list[i] - max_val);
}
if(sum > 0) lP += log(sum);
}
double get_lP(){
return lP;
}
double get_lphi(){
return lphi;
}
int get_num_children(){
return num_children;
}
int get_cuts(){
return c::cuts;
}
void set_lP(double lP){
this->lP = lP;
}
void set_lPhi(double lphi){
this->lphi = lphi;
}
void set_count(int count[2]){
this->count[0] = count[0];
this->count[1] = count[1];
}
void get_count(int count_out[2]){
count_out[0] = this->count[0];
count_out[1] = this->count[1];
}
int get_count() {
if (count[0] < 0 && count[1] < 0) {
return count[0] + count[1];
} else {
return abs(count[0]) + abs(count[1]);
}
}
void set_child(int dim, int cut, ctree_node* node) {
if (children != NULL)children[dim][cut] = node;
}
ctree_node* get_child(int dim,int cut){
if(children == NULL) return NULL;
return children[dim][cut];
}
};
class copt_tree
{
private:
ctree_node* root;
int num_children;
int count_lim;
int max_depth;
void init(int num_children, int count_lim, int max_depth){
this->num_children = num_children;
root = new ctree_node(num_children);
this->count_lim = count_lim;
if(this->count_lim < 2){
this->count_lim = 2;
cerr << "Warning: Minimum count limit is 2, may be fixed in future version\n";
// this is due to counting separately rather than together
}
this->max_depth = max_depth;
region_cache.init_table(27);
}
public:
opt_region_hash<ctree_node*> region_cache;
copt_tree(int num_children, int count_lim, int max_depth){
init(num_children,count_lim,max_depth);
}
copt_tree(int num_children){
init(num_children,5,1000);
}
~copt_tree(){
delete root;
}
void construct_full_tree(vector<vector<double> > all_data[2]){
int64_t num_nodes = 0;
int64_t num_zero_nodes = 0;
int N[2] = {(int)all_data[0].size(),(int)all_data[1].size()};
gamma_table gt(N[0]+N[1]);
root->set_count(N);
vector<cpile_t<ctree_node*,uint32_t > > pile;
pile.push_back(cpile_t<ctree_node*,uint32_t >());
for (int k = 0; k < 2; k++) {
pile[0].data[k] = vector<uint32_t>(N[k],0);
for (int i = 0; i < N[k]; i++) {
pile[0].data[k][i] = i;
}
}
pile[0].node = root;
pile[0].dim = 0;
pile[0].cut = 0;
current_region curr_reg(num_children);
opt_region working_reg(num_children);
int depth = 0;
bool done = false;
while (!done){
if(pile.size() == 0){
done = true;
continue;
}
int curr_dim = pile[depth].dim;
int curr_cut = pile[depth].cut;
ctree_node* curr_node = pile[depth].node;
int curr_count[2];
curr_node->get_count(curr_count);
// work out what to count
bool back_up = false;
// check if current node is leaf or at end
if(curr_node->is_leaf()
|| (abs(curr_count[0])+abs(curr_count[1])) <= count_lim
|| (curr_count[0] <= 0 && curr_count[1] <= 0)
|| depth >= max_depth
|| working_reg.full()){
// back up
back_up = true;
// assume cuts are the same, so don't nee to search for lP0
curr_node->set_uniform(depth);
}else if(curr_node->get_child(curr_dim,curr_cut) != NULL){
// move to next node
if(pile[depth].cut < c::cuts - 1){
pile[depth].cut++;
}else if(pile[depth].dim < num_children - 1){
pile[depth].dim++;
pile[depth].cut = 0;
}else{
// reached end of node!! back up
back_up = true;
curr_node->compute_lPs(depth,gt);
}
}
if (back_up) {
depth--;
pile.pop_back();
if(depth < 0) continue;
curr_reg.uncut(pile[depth].dim,pile[depth].cut);
working_reg.uncut(pile[depth].dim);
continue;
}
curr_dim = pile[depth].dim;
curr_cut = pile[depth].cut;
// do the counting
working_reg.cut(curr_dim,curr_cut);
uint32_t working_hash = region_cache.hash(working_reg);
pair<ctree_node*,bool> new_node = region_cache.find(working_reg,working_hash);
if (!new_node.second) {
pile.push_back(cpile_t<ctree_node*,uint32_t >());
depth++;
bool is_diff_sep[2] = {true, true};
for (int k = 0; k < 2; k++) {
if(pile[depth-1].data[k].size() > 0){
is_diff_sep[k] = cut_region_one(all_data[k], pile[depth - 1].data[k], pile[depth].data[k],
curr_dim, curr_cut, curr_reg.get_lim(curr_dim));
}else{
is_diff_sep[k] = false;
}
}
//bool is_diff = is_diff_sep[0]||is_diff_sep[1];
bool is_diff = true;
curr_reg.cut(curr_dim, curr_cut);
pile[depth].dim = 0;
pile[depth].cut = 0;
int curr_count[2];
curr_count[0] = pile[depth].data[0].size();
curr_count[1] = pile[depth].data[1].size();
// must match the backup criteria
// kind of un-elegant that we need this...
if (!is_diff
|| (abs(curr_count[0])+abs(curr_count[1])) <= count_lim
|| (curr_count[0] <= 0 && curr_count[1] <= 0)
|| depth >= max_depth
|| working_reg.full()){
new_node.first = new ctree_node();
num_zero_nodes++;
}else {
new_node.first = new ctree_node(num_children);
}
new_node.first->set_count(curr_count);
num_nodes++;
curr_node->set_child(curr_dim, curr_cut, new_node.first);
pile[depth].node = new_node.first;
region_cache.insert(working_reg,new_node.first,working_hash);
if (num_nodes % 1000000 == 0) {
cerr << "Nodes(" <<pile[0].dim << "):"
<< num_nodes << " : " << num_zero_nodes
<< " : " << (num_nodes-num_zero_nodes) <<'\n';
}
} else {
curr_node->set_child(curr_dim, curr_cut, new_node.first);
working_reg.uncut(curr_dim);
}
}
cerr << "Nodes:" << num_nodes
<< ", Zero nodes:" << num_zero_nodes
<< ", Non-Zero nodes:" << (num_nodes-num_zero_nodes) <<'\n';
}
/////////////////////////
// the tree and the regions
// N is number of data points
void construct_MAP_tree(map_tree &map_region_tree,opt_region_hash<uint32_t> &map_regions,int N){
// Check if tree and region is empty
// copy the root over
// the second part is actually not used :/
vector<pile_t<uint32_t,char> > map_pile;
map_pile.push_back(pile_t<uint32_t,char>());
map_pile[0].node = map_region_tree.get_full_tree();
map_pile[0].dim = -1;
map_pile[0].cut = -1;
region_allocator<map_tree_node> *map_ra = map_region_tree.get_ra();
// initialise state variables
int depth = 0;
gamma_table gt(N);
vector<pile_t<ctree_node*,char > > pile;
pile.push_back(pile_t<ctree_node*,char >());
pile[0].data = vector<char>();
pile[0].node = root;
pile[0].dim = -1;
pile[0].cut = -1;
opt_region working_reg(num_children);
bool done = false;
while(!done) {
if (pile.size() == 0) {
done = true;
continue;
}
// this is only kind of temporary
int curr_dim = pile[depth].dim;
int curr_cut = pile[depth].cut;
ctree_node* curr_node = pile[depth].node;
uint32_t curr_map_node = map_pile[depth].node;
bool back_up = false;
bool add_region = false;
int map_dim = -1;
// work out whether we stop at this node
int curr_count[2];
curr_node->get_count(curr_count);
if (curr_node->is_leaf()
|| (abs(curr_count[0])+abs(curr_count[1])) <= count_lim
|| (curr_count[0] <= 0 && curr_count[1] <= 0)
|| depth >= max_depth
|| working_reg.full()) {
// we are already at a uniform node
// add to regions
add_region = true;
back_up = true;
} else if(curr_dim == -1){
double post_rho = -c::l2;
// base measure
post_rho += curr_node->get_lphi();
post_rho -= curr_node->get_lP();
if(post_rho>-c::l2){
// add to regions
add_region = true;
back_up = true;
}else{
// choose a dimension
map_dim = 0;
ctree_node* child_0 = curr_node->get_child(0,0);
ctree_node* child_1 = curr_node->get_child(0,1);
int count0[2];
child_0->get_count(count0);
int count1[2];
child_1->get_count(count1);
int curr_count[2];
curr_node->get_count(curr_count);
count0[0] = abs(count0[0]);
count0[1] = abs(count0[1]);
count1[0] = abs(count1[0]);
count1[1] = abs(count1[1]);
double max_post_prob = 0;
max_post_prob += gt.compute_lD2(abs(curr_count[0]),count0[0],count1[0]);
max_post_prob += gt.compute_lD2(abs(curr_count[1]),count0[1],count1[1]);
max_post_prob += child_0->get_lP();
max_post_prob += child_1->get_lP();
for(int i = 1;i<num_children; i++) {
child_0 = curr_node->get_child(i, 0);
child_1 = curr_node->get_child(i, 1);
child_0->get_count(count0);
child_1->get_count(count1);
count0[0] = abs(count0[0]);
count0[1] = abs(count0[1]);
count1[0] = abs(count1[0]);
count1[1] = abs(count1[1]);
double post_prob = 0;
post_prob += gt.compute_lD2(abs(curr_count[0]),count0[0],count1[0]);
post_prob += gt.compute_lD2(abs(curr_count[1]),count0[1],count1[1]);
post_prob += child_0->get_lP();
post_prob += child_1->get_lP();
if(post_prob > max_post_prob){
map_dim = i;
max_post_prob = post_prob;
}
}
curr_dim = map_dim;
pile[depth].dim = map_dim;
curr_cut = 0;
pile[depth].cut = 0;
}
}else{
// we have already chosen a dimension to cut...
if(curr_cut < c::cuts - 1) {
pile[depth].cut++;
curr_cut++;
}else{
back_up = true;
}
}
if(add_region){
// add region to the hash
map_regions.insert(working_reg, curr_map_node);
// compute the density
(*map_ra)[curr_map_node]->set_area(-depth);
int curr_count[2];
curr_node->get_count(curr_count);
(*map_ra)[curr_map_node]->set_count((abs(curr_count[0])-abs(curr_count[1])));
}
if(back_up){
depth--;
pile.pop_back();
if (depth < 0) continue;
working_reg.uncut(pile[depth].dim);
continue;
}
// go down
depth++;
pair<uint32_t,map_tree_node*> new_map_node = map_ra->create_node();
(*map_ra)[curr_map_node]->set_dim(curr_dim);
(*map_ra)[curr_map_node]->set_child(curr_cut,new_map_node.first);
map_pile.push_back(pile_t<uint32_t,char >());
map_pile[depth].node = new_map_node.first;
working_reg.cut(curr_dim, curr_cut);
pile.push_back(pile_t<ctree_node*,char >());
pile[depth].dim = -1;
pile[depth].cut = -1;
pile[depth].node = curr_node->get_child(curr_dim,curr_cut);
}
}
int get_num_children(){
return num_children;
}
ctree_node* get_full_tree(){
return root;
}
double get_lP(){
return root->get_lP();
}
double get_log_coupling_prob(){
return root->get_lphi() - root->get_lP() - c::l2;
}
};
#endif /* COPT_TREE_H */