forked from intel/dffml
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
190 lines (180 loc) · 7.72 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# SPDX-License-Identifier: MIT
# Copyright (c) 2019 Intel Corporation
import os
import sys
import ast
import site
import pathlib
from io import open
import importlib.util
from setuptools import find_packages, setup
# See https://github.com/pypa/pip/issues/7953
site.ENABLE_USER_SITE = "--user" in sys.argv[1:]
class InstallException(Exception):
pass
if sys.version_info.major != 3 and sys.version_info.minor < 7:
raise InstallException("dffml is incompatible with Python version < 3.7!")
with open(pathlib.Path("dffml", "version.py"), "r") as f:
for line in f:
if line.startswith("VERSION"):
VERSION = ast.literal_eval(line.strip().split("=")[-1].strip())
break
# Load file by path
spec = importlib.util.spec_from_file_location(
"plugins", os.path.join(os.path.dirname(__file__), "dffml", "plugins.py")
)
plugins = importlib.util.module_from_spec(spec)
spec.loader.exec_module(plugins)
with open("README.md", "r", encoding="utf-8") as f:
README = f.read()
DEV_REQUIRES = []
REQUIREMENTS_DEV_TXT_PATH = pathlib.Path(__file__).parent.joinpath("requirements-dev.txt")
if REQUIREMENTS_DEV_TXT_PATH.is_file():
DEV_REQUIRES = list(
map(
lambda i: i.strip(),
REQUIREMENTS_DEV_TXT_PATH.read_text().split("\n"),
)
)
setup(
name="dffml",
version=VERSION,
description="Data Flow Facilitator for Machine Learning",
long_description=README,
long_description_content_type="text/markdown",
author="John Andersen",
author_email="[email protected]",
maintainer="John Andersen",
maintainer_email="[email protected]",
url="https://github.com/intel/dffml",
license="MIT",
keywords=[""],
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: Implementation :: PyPy",
],
packages=find_packages(),
include_package_data=True,
zip_safe=False,
# Temporary until we split consoletest into it's own package
install_requires=[],
extras_require={
"dev": DEV_REQUIRES,
**plugins.PACKAGE_NAMES_BY_PLUGIN_INSTALLABLE,
},
entry_points={
"console_scripts": ["dffml = dffml.cli.cli:CLI.main"],
"dffml.source": [
"csv = dffml.source.csv:CSVSource",
"json = dffml.source.json:JSONSource",
"memory = dffml.source.memory:MemorySource",
"idx1 = dffml.source.idx1:IDX1Source",
"idx3 = dffml.source.idx3:IDX3Source",
"db = dffml.source.db:DbSource",
"ini = dffml.source.ini:INISource",
"dfpreprocess = dffml.source.dfpreprocess:DataFlowPreprocessSource",
"op = dffml.source.op:OpSource",
"df = dffml.source.df:DataFlowSource",
"dir = dffml.source.dir:DirectorySource",
"dataframe = dffml.source.dataframe:DataFrameSource",
"iris.training = dffml.source.dataset.iris:iris_training.source",
"mnist.training = dffml.source.dataset.mnist:mnist_training.source",
"owasp.threat-dragon = dffml.source.dataset.threat_modeling:threat_dragon.source",
],
"dffml.port": ["json = dffml.port.json:JSON"],
"dffml.service.cli": ["dev = dffml.service.dev:Develop"],
"dffml.configloader": [
"json = dffml.configloader.json:JSONConfigLoader"
],
# Data Flow
"dffml.operation": [
# Output
"group_by = dffml.operation.output:GroupBy",
"get_single = dffml.operation.output:GetSingle",
"get_multi = dffml.operation.output:GetMulti",
"associate = dffml.operation.output:Associate",
"associate_definition = dffml.operation.output:AssociateDefinition",
# Mapping
"dffml.mapping.extract = dffml.operation.mapping:mapping_extract_value",
"dffml.mapping.create = dffml.operation.mapping:create_mapping",
# Dataflow
"dffml.dataflow.run = dffml.operation.dataflow:run_dataflow",
# Model
"dffml.model.predict = dffml.operation.model:model_predict",
# io
"AcceptUserInput = dffml.operation.io:AcceptUserInput",
"print_output = dffml.operation.io:print_output",
# preprocess
"literal_eval = dffml.operation.preprocess:literal_eval",
# math
"multiply = dffml.operation.math:multiply",
# packaging
"pip_install = dffml.operation.packaging:pip_install",
# Database
"db_query_create_table = dffml.operation.db:db_query_create_table",
"db_query_insert = dffml.operation.db:db_query_insert",
"db_query_update = dffml.operation.db:db_query_update",
"db_query_remove = dffml.operation.db:db_query_remove",
"db_query_insert_or_update = dffml.operation.db:db_query_insert_or_update",
"db_query_lookup = dffml.operation.db:db_query_lookup",
# Archive
"make_zip_archive = dffml.operation.archive:make_zip_archive",
"extract_zip_archive = dffml.operation.archive:extract_zip_archive",
"make_tar_archive = dffml.operation.archive:make_tar_archive",
"extract_tar_archive = dffml.operation.archive:extract_tar_archive",
# Compression
"gz_compress = dffml.operation.compression:gz_compress",
"gz_decompress = dffml.operation.compression:gz_decompress",
"bz2_compress = dffml.operation.compression:bz2_compress",
"bz2_decompress = dffml.operation.compression:bz2_decompress",
"xz_compress = dffml.operation.compression:xz_compress",
"xz_decompress = dffml.operation.compression:xz_decompress",
# Source
"convert_list_to_records = dffml.operation.source:convert_list_to_records",
"convert_records_to_list = dffml.operation.source:convert_records_to_list",
],
"dffml.kvstore": ["memory = dffml.df.memory:MemoryKeyValueStore"],
"dffml.input.network": ["memory = dffml.df.memory:MemoryInputNetwork"],
"dffml.operation.network": [
"memory = dffml.df.memory:MemoryOperationNetwork"
],
"dffml.redundancy.checker": [
"memory = dffml.df.memory:MemoryRedundancyChecker"
],
"dffml.lock.network": ["memory = dffml.df.memory:MemoryLockNetwork"],
"dffml.operation.implementation.network": [
"memory = dffml.df.memory:MemoryOperationImplementationNetwork"
],
"dffml.orchestrator": [
"memory = dffml.df.memory:MemoryOrchestrator",
"ssh = dffml.df.ssh:SSHOrchestrator",
"kubernetes.job = dffml.df.kubernetes:JobKubernetesOrchestrator",
],
# Databases
"dffml.db": ["sqlite = dffml.db.sqlite:SqliteDatabase"],
# Models
"dffml.model": ["slr = dffml.model.slr:SLRModel"],
# Secrets
"dffml.secret": ["ini = dffml.secret.ini:INISecret"],
# Accuracy
"dffml.accuracy": [
"mse = dffml.accuracy.mse:MeanSquaredErrorAccuracy",
"clf = dffml.accuracy.clf:ClassificationAccuracy",
],
# Tuner
"dffml.tuner": [
"parameter_grid = dffml.tuner.parameter_grid:ParameterGrid",
],
# Overlays
"dffml.overlay": [
"dffml = dffml.overlay.overlay:DFFML_MAIN_PACKAGE_OVERLAY",
],
},
)