forked from jisungk/deepjazz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generator.py
193 lines (153 loc) · 6.72 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
'''
Author: Ji-Sung Kim
Project: deepjazz
Purpose: Generate jazz using a deep learning model (LSTM in deepjazz).
Some code adapted from Evan Chow's jazzml, https://github.com/evancchow/jazzml
with express permission.
Code was built while significantly referencing public examples from the
Keras documentation on GitHub:
https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py
GPU run command:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python generator.py [# of epochs]
Note: running Keras/Theano on GPU is formally supported for only NVIDIA cards (CUDA backend).
'''
from __future__ import print_function
import sys
from music21 import *
import numpy as np
from grammar import *
from preprocess import *
from qa import *
import lstm
#----------------------------HELPER FUNCTIONS----------------------------------#
''' Helper function to sample an index from a probability array '''
def __sample(a, temperature=1.0):
a = np.log(a) / temperature
a = np.exp(a) / np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1, a, 1))
''' Helper function to generate a predicted value from a given matrix '''
def __predict(model, x, indices_val, diversity):
preds = model.predict(x, verbose=0)[0]
next_index = __sample(preds, diversity)
next_val = indices_val[next_index]
return next_val
''' Helper function which uses the given model to generate a grammar sequence
from a given corpus, indices_val (mapping), abstract_grammars (list),
and diversity floating point value. '''
def __generate_grammar(model, corpus, abstract_grammars, values, val_indices,
indices_val, max_len, max_tries, diversity):
curr_grammar = ''
# np.random.randint is exclusive to high
start_index = np.random.randint(0, len(corpus) - max_len)
sentence = corpus[start_index: start_index + max_len] # seed
running_length = 0.0
while running_length <= 4.1: # arbitrary, from avg in input file
# transform sentence (previous sequence) to matrix
x = np.zeros((1, max_len, len(values)))
for t, val in enumerate(sentence):
if (not val in val_indices): print(val)
x[0, t, val_indices[val]] = 1.
next_val = __predict(model, x, indices_val, diversity)
# fix first note: must not have < > and not be a rest
if (running_length < 0.00001):
tries = 0
while (next_val.split(',')[0] == 'R' or
len(next_val.split(',')) != 2):
# give up after 1000 tries; random from input's first notes
if tries >= max_tries:
print('Gave up on first note generation after', max_tries,
'tries')
# np.random is exclusive to high
rand = np.random.randint(0, len(abstract_grammars))
next_val = abstract_grammars[rand].split(' ')[0]
else:
next_val = __predict(model, x, indices_val, diversity)
tries += 1
# shift sentence over with new value
sentence = sentence[1:]
sentence.append(next_val)
# except for first case, add a ' ' separator
if (running_length > 0.00001): curr_grammar += ' '
curr_grammar += next_val
length = float(next_val.split(',')[1])
running_length += length
return curr_grammar
#----------------------------PUBLIC FUNCTIONS----------------------------------#
''' Generates musical sequence based on the given data filename and settings.
Plays then stores (MIDI file) the generated output. '''
def generate(data_fn, out_fn, N_epochs):
# model settings
max_len = 20
max_tries = 1000
diversity = 0.5
# musical settings
bpm = 130
# get data
chords, abstract_grammars = get_musical_data(data_fn)
corpus, values, val_indices, indices_val = get_corpus_data(abstract_grammars)
print('corpus length:', len(corpus))
print('total # of values:', len(values))
# build model
model = lstm.build_model(corpus=corpus, val_indices=val_indices,
max_len=max_len, N_epochs=N_epochs)
# set up audio stream
out_stream = stream.Stream()
# generation loop
curr_offset = 0.0
loopEnd = len(chords)
for loopIndex in range(1, loopEnd):
# get chords from file
curr_chords = stream.Voice()
for j in chords[loopIndex]:
curr_chords.insert((j.offset % 4), j)
# generate grammar
curr_grammar = __generate_grammar(model=model, corpus=corpus,
abstract_grammars=abstract_grammars,
values=values, val_indices=val_indices,
indices_val=indices_val,
max_len=max_len, max_tries=max_tries,
diversity=diversity)
curr_grammar = curr_grammar.replace(' A',' C').replace(' X',' C')
# Pruning #1: smoothing measure
curr_grammar = prune_grammar(curr_grammar)
# Get notes from grammar and chords
curr_notes = unparse_grammar(curr_grammar, curr_chords)
# Pruning #2: removing repeated and too close together notes
curr_notes = prune_notes(curr_notes)
# quality assurance: clean up notes
curr_notes = clean_up_notes(curr_notes)
# print # of notes in curr_notes
print('After pruning: %s notes' % (len([i for i in curr_notes
if isinstance(i, note.Note)])))
# insert into the output stream
for m in curr_notes:
out_stream.insert(curr_offset + m.offset, m)
for mc in curr_chords:
out_stream.insert(curr_offset + mc.offset, mc)
curr_offset += 4.0
out_stream.insert(0.0, tempo.MetronomeMark(number=bpm))
# Play the final stream through output (see 'play' lambda function above)
play = lambda x: midi.realtime.StreamPlayer(x).play()
play(out_stream)
# save stream
mf = midi.translate.streamToMidiFile(out_stream)
mf.open(out_fn, 'wb')
mf.write()
mf.close()
''' Runs generate() -- generating, playing, then storing a musical sequence --
with the default Metheny file. '''
def main(args):
try:
N_epochs = int(args[1])
except:
N_epochs = 128 # default
# i/o settings
data_fn = 'midi/' + 'original_metheny.mid' # 'And Then I Knew' by Pat Metheny
out_fn = 'midi/' 'deepjazz_on_metheny...' + str(N_epochs)
if (N_epochs == 1): out_fn += '_epoch.midi'
else: out_fn += '_epochs.midi'
generate(data_fn, out_fn, N_epochs)
''' If run as script, execute main '''
if __name__ == '__main__':
import sys
main(sys.argv)