Skip to content

Latest commit

 

History

History
242 lines (183 loc) · 7.38 KB

README.md

File metadata and controls

242 lines (183 loc) · 7.38 KB

TensorRT YOLOv4 mask detector model on a Jetson Nano

This project presents a mask detector using TensorRT YOLOv4 on a Jetson Nano Developer Kit B01 4GB. The dataset used for YOLOv4 training is the Mask Dataset from MakeML. Cause the dataset is in Pascal VOC format, I have used the xml2yolo repository to convert the labels to Darknet format. YOLOv4 has been trained using a Google Colab Notebook based on the YOLOv4-Cloud-Tutorial repository. The conversion of the Darknet model from YOLOv4 to TensorRT has been carried out with the tensorrt_demos repository. The following sections explain in detail the steps to be followed to use the mask detector.

Hardware

1. Create a project folder

Run the following command to make sure you are in your home directory:

cd ~/

Create a folder called project:

mkdir project
cd project

2. Download the mask dataset

To train the model I used the dataset Mask Dataset from MakeML. To download it run the following command:

wget https://arcraftimages.s3-accelerate.amazonaws.com/Datasets/Mask/MaskPascalVOC.zip

Create a folder called dataset to store all images and label files:

mkdir dataset
#Install the zip and unzip libraries if you don't have them
sudo apt install zip unzip
unzip MaskPascalVOC -d dataset/
rm MaskPascalVOC.zip

Inside the dataset folder there are two folders. One with the annotations and the other with the raw images.

├── annotations
│   ├── maksssksksss0.xml
│   ├── maksssksksss1.xml
│   ├── maksssksksss2.xml
│   ├── maksssksksss3.xml
│   └── ...
└── images
    ├── maksssksksss0.png
    ├── maksssksksss1.png
    ├── maksssksksss2.png
    ├── maksssksksss3.png
    └── ...

3. Convert training image labels to YOLO format

Clone the following repository:

cd ~/project
git clone https://github.com/jmudy/xml2yolo.git
cd xml2yolo

Copy the label files to this directory and run the script convert.py to convert the labels from Pascal VOC format to Darknet format.

cp ../dataset/annotations/*.xml .
python3 convert.py
mv *.txt ../dataset/annotations/
rm ../dataset/annotations/*.xml

4. Train YOLOv4 on the custom dataset

The images for training and test have been divided in a ratio of 80-20% respectively.

Clone the following repository to download the files to be used in the training with Google Colab.

cd ~/project
git clone https://github.com/jmudy/mask-detector
cp -r mask-detector/yolov4-mask/ .
rm -r -f mask-detector/

Create obj and test folders to store the training and test images and labels, with a ratio of 80% training - 20% test.

cd ~/project/dataset
mkdir obj
mkdir test

cd images
cp $(ls -v | head -n 682) ../obj
cp $(ls -v | tail -n 171) ../test

cd ../annotations
cp $(ls -v | head -n 682) ../obj
cp $(ls -v | tail -n 171) ../test

cd ../

Shape of the dataset folder:

├── images
├── annotations
├── obj
│   ├── maksssksksss0.png
│   ├── maksssksksss0.txt
│   ├── maksssksksss1.png
│   ├── maksssksksss1.txt
│   ├── maksssksksss2.png
│   ├── maksssksksss2.txt
│   └── ...
└── test
    ├── maksssksksss682.png
    ├── maksssksksss682.txt
    ├── maksssksksss683.png
    ├── maksssksksss683.txt
    ├── maksssksksss684.png
    ├── maksssksksss684.txt
    └── ...

Compress obj and test folders and save in yolov4-mask folder.

zip -r ../yolov4-mask/obj.zip obj/
zip -r ../yolov4-mask/test.zip test/

The following Google Colab Notebook can be used to train the model with the custom dataset (NOTE: Copy the yolov4-mask folder to the root of your Google Drive folder before using the Notebook)

https://colab.research.google.com/drive/1MriQiq8z7lxsDWkibTULqymypdeas_d-?usp=sharing

At the end of training rename the file /mydrive/yolov4-mask/backup/yolov4-mask_best.weights to yolov4-mask.weights.

5. Convert YOLOv4 to TensorRT model

Clone the following repository:

cd ~/project
git clone https://github.com/jkjung-avt/tensorrt_demos.git
cd tensorrt_demos

Build and install the following dependencies:

cd ssd
bash install_pycuda.sh
cd ../
wget https://raw.githubusercontent.com/jkjung-avt/jetson_nano/master/install_protobuf-3.8.0.sh
bash install_protobuf-3.8.0.sh
sudo pip3 install onnx==1.4.1

Compile with make:

cd plugins
make

Copy in the ~/project/tensorrt_demos/yolo/ folder the yolov4-mask.cfg file you have used and the yolov4-mask.weights file that has been created in the training with Google Colab and convert the Darknet model to ONNX model and then to TensorRT engine.

cd ~/project/tensorrt_demos/yolo
python3 yolo_to_onnx.py -m yolov4-mask
python3 onnx_to_tensorrt.py -m yolov4-mask

Change the COCO_CLASSES_LIST in the yolo_classes.py file located in the ~/project/tensorrt_demos/utils/ folder with the classes that have been trained:

"""yolo_classes.py

NOTE: Number of YOLO COCO output classes differs from SSD COCO models.
"""

COCO_CLASSES_LIST = [
    'with_mask',
    'without_mask',
    'mask_weared_incorrect',
]

# For translating YOLO class ids (0~79) to SSD class ids (0~90)
yolo_cls_to_ssd = [
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
    21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
    41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
    59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
    80, 81, 82, 84, 85, 86, 87, 88, 89, 90,
]

def get_cls_dict(category_num):
    """Get the class ID to name translation dictionary."""
    if category_num == 3:
        return {i: n for i, n in enumerate(COCO_CLASSES_LIST)}
    else:
        return {i: 'CLS%d' % i for i in range(category_num)}

Change in the trt_yolo.py file the default value of the classes that are detected and increase the confidence threshold:

cd ~/project/tensorrt_demos
sed -i '33s/default=80/default=3/' trt_yolo.py
sed -i '101s/conf_th=0.3/conf_th=0.8/' trt_yolo.py

6. Results

Run the following command to display the results:

cd ~/project/tensorrt_demos
python3 trt_yolo.py --usb 0 --model yolov4-mask

To view the demo please click on the following YouTube link:

https://www.youtube.com/watch?v=YohIfmsn2Jg

References

This project is totally inspired by the following previous repositories: