All simulations are done using R
with version 4.2.1 (2022-06-23). The required packages are POPInf
, IPD
, quantreg
, doParallel
, data.table
, knockoff
, AER
, MASS
, sandwich
, and lmtest
.
./old_task/Fun.R
: Functions for simulation and PSPS protocol./old_task/mean.R
: mean estimation./old_task/ols.R
: linear regression./old_task/logistic.R
: logistic regression
./new_task/Fun.R
: Functions for simulation and PSPS protocol./new_task/qr.R
: quantile regression./new_task/ngbr.R
: negative binomial regression./new_task/iv.R
: instrumental variables regression./new_task/dlasso.R
: debiased Lasso./new_task/ranksum_t1e.R
: Wilcoxon rank-sum test (type-I error)./new_task/ranksum_power.R
: Wilcoxon rank-sum test (power)
./fdr/Fun.R
: Functions for simulation and PSPS protocol./fdr/Fun_PSPS-knockoff.R
: Functions for PSPS-knockoff./fdr/BH
: PSPS-BH simulation./fdr/data_knockoff
: generate data for PSPS-knockoff simulations./fdr/dlasso_knockoff
: fit PSPS-dlasso on the generated data./fdr/summarize_knockoff
: fit PSPS-knockoff
The real data analysis is done in UK Biobank, which is avaiable by application this link. We used plink2 and QUAIL for fitting quantile regression to identify vQTL.
./real/Fun.R
: Functions for PSPS protocol./real/vQTL.sh
: run genome-wide vQTL analysis./real/combine.R
: apply PSPS protocol