-
Notifications
You must be signed in to change notification settings - Fork 442
/
Copy pathlstm.py
53 lines (43 loc) · 1.77 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
'''
Author: Ji-Sung Kim
Project: deepjazz
Purpose: Builds an LSTM, a type of recurrent neural network (RNN).
Code was built while significantly referencing public examples from the
Keras documentation on GitHub:
https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py
'''
from __future__ import print_function
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
import numpy as np
''' Build a 2-layer LSTM from a training corpus '''
def build_model(corpus, val_indices, max_len, N_epochs=128):
# number of different values or words in corpus
N_values = len(set(corpus))
# cut the corpus into semi-redundant sequences of max_len values
step = 3
sentences = []
next_values = []
for i in range(0, len(corpus) - max_len, step):
sentences.append(corpus[i: i + max_len])
next_values.append(corpus[i + max_len])
print('nb sequences:', len(sentences))
# transform data into binary matrices
X = np.zeros((len(sentences), max_len, N_values), dtype=np.bool)
y = np.zeros((len(sentences), N_values), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, val in enumerate(sentence):
X[i, t, val_indices[val]] = 1
y[i, val_indices[next_values[i]]] = 1
# build a 2 stacked LSTM
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=(max_len, N_values)))
model.add(Dropout(0.2))
model.add(LSTM(128, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(N_values))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit(X, y, batch_size=128, nb_epoch=N_epochs)
return model