forked from NVIDIA/nv-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix_math.cuh
159 lines (131 loc) · 5.08 KB
/
matrix_math.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/******************************************************************************
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#ifndef __MATRIX_MATH_HXX__
#define __MATRIX_MATH_HXX__
template <int M, int K>
__device__ __inline__ void loadWeights(float weights_local[K], float* weights_remote, int layer, int row, int lda=M) {
if (row >= M) return;
#pragma unroll
for (int i=0; i<K; i++) {
weights_local[i] = weights_remote[lda*K*layer + lda*i + row];
}
}
// weights_unvectorized is an MxK matrix of col-major half values
// weights_vectorized is an MxK/2 matrix of half2 values, where each half2 contains adjacent entries of a single row but is otherwise still col-major
// Total number of threads should equal M
static __device__ __forceinline__ half toHalf(float f) {
return f;
}
static __device__ __forceinline__ half toHalf(half f) {
return __float2half(f);
}
template <typename T>
__global__ void vectorizeWeights(int M, int K,half2* weights_vectorized, T* weights_unvectorized) {
int row = blockIdx.x*blockDim.x + threadIdx.x;
for (int k=0; k<K; k+= 2) {
half2 stage;
stage.x = toHalf(weights_unvectorized[M*k + row]);
stage.y = toHalf(weights_unvectorized[M*(k+1) + row]);
weights_vectorized[M*(k/2) + row] = stage;
}
}
template <int M, int K>
__device__ __inline__ void loadVectorizedWeights(half2 weights_local[K/2], half2* weights_remote, int layer, int thread_id, int lda=M) {
//if (thread_id >= M) return;
int row = thread_id;
#pragma unroll
for (int i=0; i<K/2; i++) {
weights_local[i] = weights_remote[lda*K/2*layer + lda*i + row];
}
}
template <int K, int K_UNROLL, int TILE_N>
__device__ void GEMM(float weights[K], float activations[TILE_N][K], float accum[TILE_N]) {
float accum_unrolled[TILE_N][K_UNROLL];
#pragma unroll
for (int n=0; n<TILE_N; n++) {
#pragma unroll
for (int u=0; u<K_UNROLL; u++) {
accum_unrolled[n][u] = 0.f;
}
}
#pragma unroll
for (int i=0; i<K; i += K_UNROLL) {
#pragma unroll
for (int n=0; n<TILE_N; n++) {
#pragma unroll
for (int u=0; u<K_UNROLL; u++) {
accum_unrolled[n][u] += weights[i+u]*activations[n][i+u];
}
}
}
#pragma unroll
for (int n=0; n<TILE_N; n++) {
#pragma unroll
for (int u=1; u<K_UNROLL; u++) {
accum_unrolled[n][0] += accum_unrolled[n][u];
}
}
#pragma unroll
for (int n=0; n<TILE_N; n++) {
accum[n] = accum_unrolled[n][0];
}
}
template <int K, int K_UNROLL, int TILE_N>
__device__ void GEMM(half2 weights[K/2], half activations[TILE_N][K], half accum[TILE_N]) {
half2 accum2[TILE_N][K_UNROLL];
#pragma unroll
for (int n=0; n<TILE_N; n++) {
#pragma unroll
for (int u=0; u<K_UNROLL; u++) {
accum2[n][u].x = 0.f;
accum2[n][u].y = 0.f;
}
}
#pragma unroll
for (int i=0; i<K/2; i+= K_UNROLL) {
#pragma unroll
for (int n=0; n<TILE_N; n++) {
#pragma unroll
for (int u=0; u<K_UNROLL; u++) {
half2* activations2 = (half2*)activations[n];
accum2[n][u] = __hfma2(weights[i+u], activations2[i+u], accum2[n][u]);
}
}
}
#pragma unroll
for (int n=0; n<TILE_N; n++) {
#pragma unroll
for (int u=1; u<K_UNROLL; u++) {
accum2[n][0] = __hadd2(accum2[n][0], accum2[n][u]);
}
}
#pragma unroll
for (int n=0; n<TILE_N; n++) {
accum[n] = accum2[n][0].x + accum2[n][0].y;
}
}
#endif