From ead4e6042c9195ae5b2953449953c6e46ff7af90 Mon Sep 17 00:00:00 2001
From: themantalope
Date: Tue, 4 Apr 2023 02:24:16 +0000
Subject: [PATCH] updated readme
---
README.md | 130 ++++++++++++++++++++++++++++--------------------------
1 file changed, 68 insertions(+), 62 deletions(-)
diff --git a/README.md b/README.md
index f3f1292d..b308ccb4 100644
--- a/README.md
+++ b/README.md
@@ -10,7 +10,6 @@
-
@@ -22,15 +21,15 @@
CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions.
-⚡ **Fast**: Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks.
+⚡ **Fast**: Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks.
🫐 **Elastic**: Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing.
-🐥 **Easy-to-use**: No learning curve, minimalist design on client and server. Intuitive and consistent API for image and sentence embedding.
+🐥 **Easy-to-use**: No learning curve, minimalist design on client and server. Intuitive and consistent API for image and sentence embedding.
👒 **Modern**: Async client support. Easily switch between gRPC, HTTP, WebSocket protocols with TLS and compression.
-🍱 **Integration**: Smooth integration with neural search ecosystem including [Jina](https://github.com/jina-ai/jina) and [DocArray](https://github.com/jina-ai/docarray). Build cross-modal and multi-modal solutions in no time.
+🍱 **Integration**: Smooth integration with neural search ecosystem including [Jina](https://github.com/jina-ai/jina) and [DocArray](https://github.com/jina-ai/docarray). Build cross-modal and multi-modal solutions in no time.
[*] with default config (single replica, PyTorch no JIT) on GeForce RTX 3090.
@@ -39,17 +38,16 @@ CLIP-as-service is a low-latency high-scalability service for embedding images a
## Try it!
An always-online server `api.clip.jina.ai` loaded with `ViT-L-14-336::openai` is there for you to play & test.
-Before you start, make sure you have obtained a personal access token from the [Jina AI Cloud](https://cloud.jina.ai/settings/tokens),
+Before you start, make sure you have obtained a personal access token from the [Jina AI Cloud](https://cloud.jina.ai/settings/tokens),
or via CLI as described in [this guide](https://docs.jina.ai/jina-ai-cloud/login/#create-a-new-pat):
-```bash
+```bash
jina auth token create -e
```
Then, you need to configure the access token in the parameter `credential` of the client in python or set it in the HTTP request header `Authorization` as ``.
-⚠️ Our demo server `demo-cas.jina.ai` is sunset and no longer available after **15th of Sept 2022**.
-
+⚠️ Our demo server `demo-cas.jina.ai` is sunset and no longer available after **15th of Sept 2022**.
### Text & image embedding
@@ -66,10 +64,10 @@ curl \
-X POST https://api.clip.jina.ai:8443/post \
-H 'Content-Type: application/json' \
-H 'Authorization: ' \
--d '{"data":[{"text": "First do it"},
- {"text": "then do it right"},
- {"text": "then do it better"},
- {"uri": "https://picsum.photos/200"}],
+-d '{"data":[{"text": "First do it"},
+ {"text": "then do it right"},
+ {"text": "then do it better"},
+ {"uri": "https://picsum.photos/200"}],
"execEndpoint":"/"}'
```
@@ -94,6 +92,7 @@ r = c.encode(
)
print(r)
```
+
@@ -160,6 +159,7 @@ curl \
```
gives:
+
```
"the blue car is on the left, the red car is on the right"
0.5232442617416382
@@ -174,7 +174,6 @@ gives:
-
@@ -198,6 +197,7 @@ curl \
```
gives:
+
```
"this is a photo of three berries"
0.48507222533226013
@@ -216,15 +216,13 @@ gives:
|
-
-
## [Documentation](https://clip-as-service.jina.ai)
## Install
-CLIP-as-service consists of two Python packages `clip-server` and `clip-client` that can be installed _independently_. Both require Python 3.7+.
+CLIP-as-service consists of two Python packages `clip-server` and `clip-client` that can be installed _independently_. Both require Python 3.7+.
### Install server
@@ -252,9 +250,10 @@ pip install "clip-server[onnx]"
```bash
-pip install nvidia-pyindex
+pip install nvidia-pyindex
pip install "clip-server[tensorrt]"
```
+
|
@@ -271,7 +270,6 @@ pip install clip-client
You can run a simple connectivity check after install.
-
C/S |
@@ -282,12 +280,12 @@ You can run a simple connectivity check after install.
Server
|
-
+ |
```bash
python -m clip_server
```
-
+
|
@@ -299,7 +297,7 @@ python -m clip_server
|
Client
|
-
+ |
```python
from clip_client import Client
@@ -307,7 +305,7 @@ from clip_client import Client
c = Client('grpc://0.0.0.0:23456')
c.profile()
```
-
+
|
@@ -317,9 +315,7 @@ c.profile()
|
-
-You can change `0.0.0.0` to the intranet or public IP address to test the connectivity over private and public network.
-
+You can change `0.0.0.0` to the intranet or public IP address to test the connectivity over private and public network.
## Get Started
@@ -327,25 +323,30 @@ You can change `0.0.0.0` to the intranet or public IP address to test the connec
1. Start the server: `python -m clip_server`. Remember its address and port.
2. Create a client:
+
```python
from clip_client import Client
-
+
c = Client('grpc://0.0.0.0:51000')
- ```
+ ```
+
3. To get sentence embedding:
- ```python
- r = c.encode(['First do it', 'then do it right', 'then do it better'])
-
- print(r.shape) # [3, 512]
- ```
+
+ ```python
+ r = c.encode(['First do it', 'then do it right', 'then do it better'])
+
+ print(r.shape) # [3, 512]
+ ```
+
4. To get image embedding:
- ```python
- r = c.encode(['apple.png', # local image
- 'https://clip-as-service.jina.ai/_static/favicon.png', # remote image
- '']) # in image URI
-
- print(r.shape) # [3, 512]
- ```
+
+ ```python
+ r = c.encode(['apple.png', # local image
+ 'https://clip-as-service.jina.ai/_static/favicon.png', # remote image
+ '']) # in image URI
+
+ print(r.shape) # [3, 512]
+ ```
More comprehensive server and client user guides can be found in the [docs](https://clip-as-service.jina.ai/).
@@ -415,7 +416,7 @@ da = DocumentArray.pull('ttl-embedding', show_progress=True, local_cache=True)
-#### Search via sentence
+#### Search via sentence
Let's build a simple prompt to allow a user to type sentence:
@@ -461,7 +462,6 @@ Now you can input arbitrary English sentences and view the top-9 matching images
-
"professor cat is very serious" |
@@ -493,7 +493,7 @@ Now you can input arbitrary English sentences and view the top-9 matching images
-Let's save the embedding result for our next example:
+Let's save the embedding result for our next example:
```python
da.save_binary('ttl-image')
@@ -503,7 +503,7 @@ da.save_binary('ttl-image')
We can also switch the input and output of the last program to achieve image-to-text search. Precisely, given a query image find the sentence that best describes the image.
-Let's use all sentences from the book "Pride and Prejudice".
+Let's use all sentences from the book "Pride and Prejudice".
```python
from docarray import Document, DocumentArray
@@ -521,23 +521,23 @@ da.summary()
```
```text
- Documents Summary
-
- Length 6403
- Homogenous Documents True
- Common Attributes ('id', 'text')
-
- Attributes Summary
-
- Attribute Data type #Unique values Has empty value
- ──────────────────────────────────────────────────────────
- id ('str',) 6403 False
- text ('str',) 6030 False
+ Documents Summary
+
+ Length 6403
+ Homogenous Documents True
+ Common Attributes ('id', 'text')
+
+ Attributes Summary
+
+ Attribute Data type #Unique values Has empty value
+ ──────────────────────────────────────────────────────────
+ id ('str',) 6403 False
+ text ('str',) 6030 False
```
#### Encode sentences
-Now encode these 6,403 sentences, it may take 10 seconds or less depending on your GPU and network:
+Now encode these 6,403 sentences, it may take 10 seconds or less depending on your GPU and network:
```python
from clip_client import Client
@@ -575,7 +575,7 @@ for d in img_da.sample(10):
#### Showcase
-Fun time! Note, unlike the previous example, here the input is an image and the sentence is the output. All sentences come from the book "Pride and Prejudice".
+Fun time! Note, unlike the previous example, here the input is an image and the sentence is the output. All sentences come from the book "Pride and Prejudice".
@@ -584,7 +584,6 @@ Fun time! Note, unlike the previous example, here the input is an image and the
-
@@ -632,7 +631,6 @@ Fun time! Note, unlike the previous example, here the input is an image and the
-
|
@@ -673,8 +671,6 @@ Fun time! Note, unlike the previous example, here the input is an image and the
|
-
-
### Rank image-text matches via CLIP model
From `0.3.0` CLIP-as-service adds a new `/rank` endpoint that re-ranks cross-modal matches according to their joint likelihood in CLIP model. For example, given an image Document with some predefined sentence matches as below:
@@ -706,7 +702,7 @@ print(r['@m', ['text', 'scores__clip_score__value']])
```
```text
-[['a photo of a television studio', 'a photo of a conference room', 'a photo of a lecture room', 'a photo of a control room', 'a photo of a podium indoor'],
+[['a photo of a television studio', 'a photo of a conference room', 'a photo of a lecture room', 'a photo of a control room', 'a photo of a podium indoor'],
[0.9920725226402283, 0.006038925610482693, 0.0009973491542041302, 0.00078492151806131, 0.00010626466246321797]]
```
@@ -748,7 +744,17 @@ class ReRank(Executor):
Intrigued? That's only scratching the surface of what CLIP-as-service is capable of. [Read our docs to learn more](https://clip-as-service.jina.ai).
+## Build locally with Docker
+
+You need to be in the `server` directory to build the Docker image.
+
+```bash
+cd server
+docker build . -f ../Dockerfiles/cuda.Dockerfile -t clip-as-service-gpu:latest
+```
+
+
## Support
- Join our [Slack community](https://slack.jina.ai) and chat with other community members about ideas.