-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresize_deeplab_v3.py
174 lines (136 loc) · 5.74 KB
/
resize_deeplab_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import glob
import pandas
import cv2
import numpy as np
import matplotlib.pyplot as plt
import shutil
from sklearn.cross_validation import train_test_split
import random
from keras import backend as K
import keras
from keras.utils import to_categorical
from keras.utils.training_utils import multi_gpu_model
import os
from tensorflow.python.client import device_lib
print (device_lib.list_local_devices())
import sys
sys.path.append('keras-deeplab-v3-plus/')
from deeplab_v3_plus.model import *
import cv2
import numpy as np
import os
import random
from skimage import io
from skimage.transform import resize
from skimage import img_as_bool
def read_data_and_split(split_seed, train_ratio, is_normalize=True):
"""read data into np array, normalize it and train test split
split_seed: set seed for same train test split
train_ratio: ratio of training set. range from 0 to 1
is_normalize: True for normalizr to -1 to 1
return np array with x_train, x_test, y_train, y_test
"""
idx = next(os.walk('/data/jimmy15923/cg_kidney_seg/train'))[1]
# remove two file with different size between image & mask
idx.remove("S2016-30816_9_0")
idx.remove("S2016-30816_9_1")
# set seed
random.seed(split_seed)
random.shuffle(idx)
train_idx, test_idx = idx[:int(len(idx)*train_ratio)], idx[int(len(idx)*train_ratio):]
x_train = np.array([cv2.imread('/data/jimmy15923/cg_kidney_seg/train/{}/image/{}_slide.jpg'.format(x, x))[...,::-1]\
for x in train_idx], dtype="float32")
x_test = np.array([cv2.imread('/data/jimmy15923/cg_kidney_seg/train/{}/image/{}_slide.jpg'.format(x, x))[...,::-1]\
for x in test_idx], dtype="float32")
if is_normalize:
x_train = (x_train / 127.5) - 1
x_test = (x_test / 127.5) - 1
y_train = np.array([cv2.imread('/data/jimmy15923/cg_kidney_seg/train/{}/mask/{}_mask.jpg'.format(x, x))[..., 0]\
for x in train_idx])
y_test = np.array([cv2.imread('/data/jimmy15923/cg_kidney_seg/train/{}/mask/{}_mask.jpg'.format(x, x))[..., 0]\
for x in test_idx])
y_train = img_as_bool(y_train)
y_test = img_as_bool(y_test)
return x_train, x_test, y_train, y_test
def cv2_resize(array):
return np.array([resize(x, (500,500)) for x in array])
x_train, x_test, y_train, y_test = read_data_and_split(split_seed=7, train_ratio=0.8, is_normalize=True)
x_train = cv2_resize(x_train)
x_test = cv2_resize(x_test)
y_train = cv2_resize(y_train)
y_test = cv2_resize(y_test)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
y_train_inv = np.where(y_train, 0, 1)
y_train_ = np.zeros(shape=(len(y_train), 500,500, 2))
y_train_[:,:,:,0] = y_train
y_train_[:,:,:,1] = y_train_inv
y_test_inv = np.where(y_test, 0, 1)
y_test_ = np.zeros(shape=(len(y_test), 500,500, 2))
y_test_[:,:,:,0] = y_test
y_test_[:,:,:,1] = y_test_inv
# def data_gen(x_train, y_train, bz, augmentation=None):
# i = 0
# from sklearn.utils import shuffle
# while True:
# if i == len(y_train):
# i = 0
# x_train, y_train = shuffle(x_train, y_train)
# x_, y_ = x_train[i*bz:(i+1)*bz], y_train[i*bz:(i+1)*bz]
# i+=1
# yield x_, y_
def data_gen(x_train, y_train, bz, augmentation=None):
i = 0
from sklearn.utils import shuffle
while True:
# if i == len(y_train):
# i = 0
# x_train, y_train = shuffle(x_train, y_train)
# x_, y_ = x_train[i*bz:(i+1)*bz], y_train[i*bz:(i+1)*bz]
img_idx = np.random.choice(range(len(y_train)), bz, replace=False)
yield x_train[img_idx], y_train[img_idx]
# def val_gen(x_test, y_test, crop_size=500, stride=500):
# i = 0
# while True:
# x = []
# y = []
# for x_start in range(0, crop_size+1, stride):
# for y_start in range(0, crop_size+1, stride):
# x_crop = x_test[i][x_start:(x_start+crop_size), y_start:(y_start+crop_size), :]
# y_crop = y_test[i][x_start:(x_start+crop_size), y_start:(y_start+crop_size), :]
# x.append(x_crop)
# y.append(y_crop)
# i+=1
# yield np.array(x), np.array(y)
# if i == len(y_test):
# i=0
crop_size = 500
import tensorflow as tf
with tf.device('/cpu:0'):
model = Deeplabv3(input_shape=(crop_size, crop_size, 3), classes=2, OS=8)
logits = model.output
output = keras.layers.Activation("softmax")(logits)
model = Model(model.input, output)
def dice_coef_loss(y_true, y_pred, smooth = 1):
def dice_coef_fix(y_true, y_pred):
intersection = K.sum(K.abs(y_true * y_pred), axis = -1)
iou = (2. * intersection + smooth) / (K.sum(K.square(y_true), -1) + K.sum(K.square(y_pred),-1) + smooth)
return iou
loss = 1 - dice_coef_fix(y_true, y_pred)
return loss
model_gpu = multi_gpu_model(model, gpus=2)
model_gpu.compile(optimizer=keras.optimizers.SGD(lr=1e-4, momentum=0.9, nesterov=True),
loss=dice_coef_loss)
early = keras.callbacks.EarlyStopping(monitor="val_loss", patience=12, verbose=1)
check = keras.callbacks.ModelCheckpoint(monitor="val_loss",
filepath="/data/jimmy15923/cg_kidney_seg/test_resize_dice.h5",
verbose=1, save_best_only=True, save_weights_only=True)
reduce = keras.callbacks.ReduceLROnPlateau(patience=3)
model_gpu.fit_generator(data_gen(x_train, y_train_, 12),
steps_per_epoch=200,
epochs=1000,
validation_data=(x_test, y_test_),
callbacks=[early, check, reduce]
)