-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_Deblur.py
44 lines (40 loc) · 1.84 KB
/
test_Deblur.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import os, sys, math
import argparse
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from utils.loader import get_test_data
from utils.image_utils import splitimage, mergeimage
import utils
import options
args = options.Options().init(argparse.ArgumentParser(description='image debluring')).parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if __name__ == '__main__':
utils.mkdir(args.result_dir)
model_restoration= utils.get_arch(args)
model_restoration = torch.nn.DataParallel(model_restoration)
utils.load_checkpoint(model_restoration, args.weights)
print("===>Testing using weights: ", args.weights)
model_restoration.cuda()
model_restoration.eval()
inp_dir = args.input_dir
test_dataset = get_test_data(inp_dir)
test_loader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, shuffle=False,
pin_memory=True, drop_last=False, num_workers=args.test_workers)
result_dir = args.result_dir
os.makedirs(result_dir, exist_ok=True)
with torch.no_grad():
for input_, file_ in tqdm(test_loader):
input_ = input_.cuda()
B, C, H, W = input_.shape
split_data, starts = splitimage(input_, crop_size=args.crop_size, overlap_size=args.overlap_size)
for i, data in enumerate(split_data):
split_data[i] = model_restoration(data).cpu()
restored = mergeimage(split_data, starts, crop_size = args.crop_size, resolution=(B, C, H, W))
restored = torch.clamp(restored, 0, 1).permute(0, 2, 3, 1).numpy()
for j in range(B):
restored_ = restored[j]
save_file = os.path.join(result_dir, file_[j])
utils.save_img(save_file, np.uint8(np.around(restored_*255)))