Skip to content

Latest commit

 

History

History
187 lines (169 loc) · 8.04 KB

File metadata and controls

187 lines (169 loc) · 8.04 KB

BalancedMetaSoftmax - Classification

Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition" on long-tailed visual recognition datasets.

Balanced Meta-Softmax for Long-Tailed Visual Recognition
Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, Hongsheng Li
NeurIPS 2020

Snapshot

def balanced_softmax_loss(labels, logits, sample_per_class, reduction):
    """Compute the Balanced Softmax Loss between `logits` and the ground truth `labels`.
    Args:
      labels: A int tensor of size [batch].
      logits: A float tensor of size [batch, no_of_classes].
      sample_per_class: A int tensor of size [no of classes].
      reduction: string. One of "none", "mean", "sum"
    Returns:
      loss: A float tensor. Balanced Softmax Loss.
    """
    spc = sample_per_class.type_as(logits)
    spc = spc.unsqueeze(0).expand(logits.shape[0], -1)
    logits = logits + spc.log()
    loss = F.cross_entropy(input=logits, target=labels, reduction=reduction)
    return loss

Requirements

Training

End-to-end Training

  • Base model (Representation Learning)
python main.py --cfg ./config/CIFAR10_LT/softmax_imba200.yaml

Alternatively, you may download a pretrained model here and put it in the corresponding log folder.

  • Balanced Softmax
python main.py --cfg ./config/CIFAR10_LT/balanced_softmax_imba200.yaml

Decoupled Training

After obataining the base model, train the classifier with the following command:

  • Balanced Softmax
python main.py --cfg ./config/CIFAR10_LT/decouple_balanced_softmax_imba200.yaml
  • BALMS
python main.py --cfg ./config/CIFAR10_LT/balms_imba200.yaml

Evaluation

Model evaluation can be done using the following command:

python main.py --cfg ./config/CIFAR10_LT/balms_imba200.yaml --test

Experiment Results

The results could be slightly different from the results reported in the paper, since we originally used an internal repository for the experiments in the paper.

Dataset Backbone Method Accuracy download
CIFAR-10 (IF 200) ResNet-32 Softmax 74.0 model | log
CIFAR-10 (IF 200) ResNet-32 Balanced Softmax (end-to-end) 79.8 model | log
CIFAR-10 (IF 200) ResNet-32 Balanced Softmax (decouple) 81.8 model | log
CIFAR-10 (IF 200) ResNet-32 BALMS 82.2 model | log
CIFAR-100 (IF 200) ResNet-32 Softmax 41.2 model | log
CIFAR-100 (IF 200) ResNet-32 Balanced Softmax (end-to-end) 46.7 model | log
CIFAR-100 (IF 200) ResNet-32 Balanced Softmax (decouple) 47.2 model | log
CIFAR-100 (IF 200) ResNet-32 BALMS 48.0 model | log
ImageNet-LT ResNet-10 Softmax 34.8 model | log
ImageNet-LT ResNet-10 BALMS 41.6 model | log
Places-LT ResNet-152 Softmax 30.2 model | log
Places-LT ResNet-152 BALMS 38.3 model | log

Cite BALMS

@inproceedings{
    Ren2020balms,
    title={Balanced Meta-Softmax for Long-Tailed Visual Recognition},
    author={Jiawei Ren and Cunjun Yu and Shunan Sheng and Xiao Ma and Haiyu Zhao and Shuai Yi and Hongsheng Li},
    booktitle={Proceedings of Neural Information Processing Systems(NeurIPS)},
    month = {Dec},
    year={2020}
}

Instance Segmentation

For BALMS on instance segmentation, please try out this repo.

Reference