forked from nayuki/Project-Euler-solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
p100.java
88 lines (77 loc) · 3.26 KB
/
p100.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/*
* Solution to Project Euler problem 100
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/
import java.math.BigInteger;
public final class p100 implements EulerSolution {
public static void main(String[] args) {
System.out.println(new p100().run());
}
/*
* Suppose the box has b blue discs and r red discs.
* The probability of taking 2 blue discs is [b / (b + r)] * [(b - 1) / (b + r - 1)],
* which we want to be equal to 1/2. Rearrange the equation:
* [b(b - 1)] / [(b + r)(b + r - 1)] = 1 / 2.
* 2b(b - 1) = (b + r)(b + r - 1).
* 2b^2 - 2b = b^2 + br - b + br + r^2 - r.
* b^2 - b = r^2 + 2br - r.
* b^2 - (2r + 1)b + (r - r^2) = 0.
* Apply the quadratic equation to solve for b:
* b = [(2r + 1) +/- sqrt((2r + 1)^2 - 4(r - r^2))] / 2
* = r + [1 +/- sqrt(8r^2 + 1)]/2
* = r + [sqrt(8r^2 + 1) + 1]/2. (Discard the minus solution because it would make b < r)
*
* For b to be an integer, we need sqrt(8r^2 + 1) to be odd, and also 8r^2 + 1 be a perfect square.
* Assume 8y^2 + 1 = x^2 for some integer x > 0.
* We can see this is in fact a Pell's equation: x^2 - 8y^2 = 1.
*
* Suppose we have the solution (x0, y0) such that x0 > 0 and x0 is as small as possible.
* This is called the fundamental solution, and all other solutions be derived from it (proven elsewhere).
* Suppose (x0, y0) and (x1, y1) are solutions. Then we have:
* x0^2 - 8*y0^2 = 1.
* (x0 + y0*sqrt(8))(x0 - y0*sqrt(8)) = 1.
* (x1 + y1*sqrt(8))(x1 - y1*sqrt(8)) = 1. (Similarly)
* Multiply them together:
* [(x0 + y0*sqrt(8))(x0 - y0*sqrt(8))][(x1 + y1*sqrt(8))(x1 - y1*sqrt(8))] = 1 * 1.
* [(x0 + y0*sqrt(8))(x1 + y1*sqrt(8))][(x0 - y0*sqrt(8))(x1 - y1*sqrt(8))] = 1.
* [x0*x1 + x0*y1*sqrt(8) + x1*y0*sqrt(8) + 8y0*y1][x0*x1 - x0*y1*sqrt(8) - x1*y0*sqrt(8) + 8y0*y1] = 1.
* [(x0*x1 + 8y0*y1) + (x0*y1 + x1*y0)*sqrt(8)][(x0*x1 + 8y0*y1) - (x0*y1 + x1*y0)*sqrt(8)] = 1.
* (x0*x1 + 8y0*y1)^2 - 8*(x0*y1 + x1*y0)^2 = 1.
* Therefore (x0*x1 + 8y0*y1, x0*y1 + x1*y0) is also a solution.
* By inspection, the fundamental solution is (3, 1).
*/
public String run() {
// Fundamental solution
BigInteger x0 = BigInteger.valueOf(3);
BigInteger y0 = BigInteger.valueOf(1);
// Current solution
BigInteger x = BigInteger.valueOf(3);
BigInteger y = BigInteger.valueOf(1); // An alias for the number of red discs
while (true) {
// Check if this solution is acceptable
BigInteger sqrt = sqrt(y.multiply(y).multiply(BigInteger.valueOf(8)).add(BigInteger.ONE));
if (sqrt.testBit(0)) { // Is odd
BigInteger blue = sqrt.add(BigInteger.ONE).divide(BigInteger.valueOf(2)).add(y);
if (blue.add(y).compareTo(BigInteger.TEN.pow(12)) > 0)
return blue.toString();
}
// Create the next bigger solution
BigInteger nextx = x.multiply(x0).add(y.multiply(y0).multiply(BigInteger.valueOf(8)));
BigInteger nexty = x.multiply(y0).add(y.multiply(x0));
x = nextx;
y = nexty;
}
}
private static BigInteger sqrt(BigInteger x) {
BigInteger y = BigInteger.ZERO;
for (int i = (x.bitLength() - 1) / 2; i >= 0; i--) {
y = y.setBit(i);
if (y.multiply(y).compareTo(x) > 0)
y = y.clearBit(i);
}
return y;
}
}