-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
2877 lines (2562 loc) · 112 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{beamer}
\usepackage{amsthm, amssymb, amsfonts, amsmath}
\usepackage{ragged2e}
\usepackage{bclogo}
\usepackage{nicefrac}
\usepackage{multicol}
\usetheme[numbering=progressbar]{focus}
\definecolor{main}{rgb}{1.0, 0.44, 0.37}
\definecolor{background}{rgb}{1.0, 0.98, 0.94}
\title{Algebraic Structures}
\subtitle{A Lecture on Group Theory}
\author{John Rick Dolor Manzanares}
\titlegraphic{\includegraphics[scale=0.65]{Logo.png}}
\institute{Baguio City, Philippines}
\date{\today}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\section*{For Instructors}
\subsection{Math Communication}
\begin{frame}{Inquiry-Based Learning (IBL)}
\justifying
\begin{definition}
\justifying
Inquiry-based learning is a learning process that engages students by making real-world connections through exploration and high-level questioning.
\end{definition}
Instructors can run inquiry activities in the form of:
\begin{itemize}
\item Case Studies
\item Group Projects
\item Research Projects
\item Field Work
\item Unique Exercises (tailored to the students)
\end{itemize}
\end{frame}
\begin{frame}{Types of IBL}
\justifying
\begin{itemize}
\item Confirmation Inquiry
\begin{enumerate}
\justifying
\item Give students the question and the answer.
\item Students investigate the method of reaching the answer.
\end{enumerate}
\item Structured Inquiry
\begin{enumerate}
\justifying
\item Give students an open question and an investigation method.
\item Students use the method to craft an evidence-backed conclusion.
\end{enumerate}
\item Guided Inquiry
\begin{enumerate}
\justifying
\item Give students an open question.
\item Typically in groups, students design an investigation methods to reach a conclusion.
\end{enumerate}
\item Open Inquiry
\begin{enumerate}
\justifying
\item Give students time and support.
\item Students pose questions that they investigate through their own methods, and present the results to discuss and expand.
\end{enumerate}
\end{itemize}
\end{frame}
\begin{frame}{Benefits of IBL}
\begin{enumerate}
\justifying
\item Reinforces Curriculum Content
\item Warms Up the Brain
\item Promotes a Deeper Understanding of Content
\item Helps Make Learning Rewarding
\item Builds Initiative and Self-Direction
\item Offers Differenttated Instruction
\end{enumerate}
\end{frame}
\begin{frame}{IBL Strategies}
\begin{enumerate}
\justifying
\item Demonstrate How to Participate
\item Surprise Students
\item Use Inquiry When Traditional Methods Won't Work
\item Understand When Inquiry Won't Work
\item Don't Wait for the Perfect question
\item Run a Check-In Afterwards
\end{enumerate}
\end{frame}
\begin{frame}{Pillars of IBL}
\justifying
\begin{enumerate}
\justifying
\item Students deeply engaged in rich mathematical sense making.
\item Regular opportunities for students to collaborate with peers and instructors.
\item Instructor inquiry into student thinking.
\item Instructor focus on equity.
\end{enumerate}
\end{frame}
\begin{frame}{Pillars of Grading for Equity}
\justifying
\begin{enumerate}
\item Clearly defined standards
\item Helpful feedback
\item Marks indicate progress
\item Reattempts without penalty
\end{enumerate}
\end{frame}
\begin{frame}{Inclusivity and Equity in the Classroom}
\begin{enumerate}
\justifying
\item Use inclusive teaching practices and frameworks that encourage more students to be engaged more often.
\item Add an equity statement to signify the importance of inclusion and equity. This helps create a positive learning environment in your class. Imaging a student of different nationality, sitting in a room full of people not like her.
\item Use the students' preferred pronouns.
\end{enumerate}
\end{frame}
\begin{frame}{Reminders for Small Group Discussions and Think-Pair-Share}
\begin{enumerate}
\justifying
\item Visit the groups the same number of times.
\item Raise softer voices and redirect louder voices.
\begin{itemize}
\justifying
\item Rather than asking for volunteers, let the students talk among the group first.
\end{itemize}
\item Avoid the question "Are there any questions...?" as it focuses more on the louder voices.
\item "What did your group discuss?" is more inviting than questions putting the students in a higher stakes scenario. For example, "What's the right answer?" where it puts a student to a right or wrong scenario rather than just sharing a though.
\end{enumerate}
\end{frame}
\section*{Introduction}
\subsection{Notations}
\begin{frame}{Notations}
\begin{table}[h]
\centering
\begin{tabular}{c| l}
$\emptyset$ & Empty Set \\
$\mathbb{Z}$ & Set of Integers \\
$\mathbb{Q}$ & Set of Rational Numbers \\
$\mathbb{R}$ & Set of Real Numbers \\
$\mathbb{C}$ & Set of Complex Numbers \\
$\mathbb{Z}^+, \mathbb{Q}^+, \mathbb{R}^+$ & Positive Elements of $\mathbb{Z}, \mathbb{Q}$, and $\mathbb{R}$ \\
$\mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ & Nonzero Elements of $\mathbb{Z}, \mathbb{Q}$, $\mathbb{R}$ and $\mathbb{C}$ \\
\end{tabular}
\end{table}
\end{frame}
\subsection{History of Group Theory}
\begin{frame}{Group Theory as Study of Symmetry}
\begin{itemize}
\item The definition of a group is credited to Evariste Galois in his study of \emph{symmetries} among the roots of polynomials.
\item This may be observed in finding roots of simple polynomials. For instance, if $(x, y)$ is a solution of the equation
\[
x^2 + y^2 - 4 = 0,
\]
then $(y, x)$ is also a solution since $x^2 + y^2 = y^2 + x^2$.
\end{itemize}
\end{frame}
\begin{frame}{Symmetry in a Plane}
\begin{definition}
\justifying
A \textbf{rigid motion} in the plane is a bijective function $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that, for all $x, y \in \mathbb{R}^2$, the "distance" between $f(x)$ and $f(y)$ is the same as the "distance" between $x$ and $y$.
\end{definition}
\justifying
The four rigid motions in the plane are as follows:
\begin{enumerate}
\item Translation
\item Rotation
\begin{itemize}
\justifying
\item Spinning an object around its \textbf{rotocenter} or \textbf{center of rotation} by a fixed amount called the \textbf{rotation angle}.
\end{itemize}
\item Reflection
\begin{itemize}
\justifying
\item Mirror images of all points across the \textbf{axis of reflection}.
\end{itemize}
\item Glide Reflection
\begin{itemize}
\justifying
\item Reflection followed by translation parallel to the axis of reflection.
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}{Symmetries of a Regular Polygon}
\begin{definition}
\justifying
A \textbf{symmetry} of a geometric object $O$ is a rigid motion $f$ such that $f(O) = O$.
\end{definition}
\begin{itemize}
\justifying
\item Note that every symmetry is either a rotation or a reflection.
\item We can completely identify a symmetry of a regular polygon by only considering the mapping of the vertices. We denote the set of vertices of an $n$-gon by
\[
V_n := \{v_1, \dots, v_n\} \cong \{1, \dots, n\}.
\]
where $\cong$ represents an isomorphism.
\item A symmetry of a regular $n$-gon is a bijection $\sigma : V_n \to V_n$ such that if the unordered pair $\{v_i, v_j\}$ consists of the end points of an edge of the $n$-gon, then $\{\sigma(v_i), \sigma(v_j)\}$ also contains the endpoints of an edge.
\end{itemize}
\end{frame}
\begin{frame}{Symmetries of a Triangle}
\justifying
There are six symmetries of a triangle. These are the bijections from $V_3$ onto $V_3$ given by:
\begin{enumerate}
\justifying
\item[$\rho_0$:] $1 \rightarrow 1, 2 \rightarrow 2, \text{ and } 3 \rightarrow 3.$
\item[$\rho_1$:] $1 \rightarrow 2, 2 \rightarrow 3, \text{ and } 3 \rightarrow 1.$
\item[$\rho_2$:] $1 \rightarrow 3, 2 \rightarrow 1, \text{ and } 3 \rightarrow 2.$
\item[$\mu_1$:] $1 \rightarrow 1, 2 \rightarrow 3, \text{ and } 3 \rightarrow 2.$
\item[$\mu_2$:] $1 \rightarrow 3, 2 \rightarrow 2, \text{ and } 3 \rightarrow 1.$
\item[$\mu_3$:] $1 \rightarrow 2, 2 \rightarrow 1, \text{ and } 3 \rightarrow 3.$
\end{enumerate}
\end{frame}
\begin{frame}{Property}
We denote the set of symmetries of the regular $n$-gon as $D_{2n}$ and call it the set of \emph{dihedral} symmetries.
\pause
\begin{theorem}
The cardinality of $D_{2n}$ is $2n$. In symbols, $|D_{2n}| = 2n$.
\end{theorem}
\pause
\begin{proof}
\justifying
Consider any element $v_1$ from $V_n$. For a symmetry $\sigma$, suppose that $\{v_1, v_2\}$ is an edge. A symmetry can map $n$ elements to $v_1$. However, $\sigma$ must map $v_2$ to a vertex adjacent to $\sigma(v_1)$. Note that there are only two possible ways. Once $\sigma(v_1)$ and $\sigma(v_2)$ are known, all remaining $\sigma(v_i)$ for $3 \leq i \leq n$ are determined.
\end{proof}
\end{frame}
\begin{frame}{Elements of the Dihedral Set}
\justifying
The elements of $D_{2n}$ are composed of
\begin{itemize}
\item $n$ rotations, and
\item $n$ reflection symmetries.
\end{itemize}
We can compose two functions from $D_{2n}$. Observe the compositions of the elements of $D_{2n}$ by looking at the table below.
\begin{table}
\centering
\begin{tabular}{c|c|c|c|c|c|c}
$\circ$ & $\rho_0$ & $\rho_1$ & $\rho_2$ & $\mu_1$ & $\mu_2$ & $\mu_3$ \\
\hline
$\rho_0$ & $\rho_0$ & $\rho_1$ & $\rho_2$ & $\mu_1$ & $\mu_2$ & $\mu_3$ \\
\hline
$\rho_1$ & $\rho_1$ & $\rho_2$ & $\rho_0$ & $\mu_2$ & $\mu_3$ & $\mu_1$ \\
\hline
$\rho_2$ & $\rho_2$ & $\rho_0$ & $\rho_1$ & $\mu_3$ & $\mu_1$ & $\mu_2$ \\
\hline
$\mu_1$ & $\mu_1$ & $\mu_2$ & $\mu_3$ & $\rho_0$ & $\rho_2$ & $\rho_1$ \\
\hline
$\mu_2$ & $\mu_2$ & $\mu_1$ & $\mu_3$ & $\rho_1$ & $\rho_0$ & $\rho_2$ \\
\hline
$\mu_3$ & $\mu_3$ & $\mu_2$ & $\mu_1$ & $\rho_2$ & $\rho_1$ & $\rho_0$ \\
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Symmetries of a Square}
\justifying
\begin{block}{Exercise}
\justifying
Find the symmetries of a square. Construct the operation table between elements of $D_4$ with function composition as the operation.
\end{block}
\end{frame}
\subsection{Clock Arithmetic}
\begin{frame}{Addition Modulo Twelve (12)}
\begin{itemize}
\justifying
\item Consider the set $\mathbb{Z}_{12} := \{0, 1, \dots, 11\}$ of integers between zero (0) and eleven (11). For any $a, b \in \mathbb{Z}_{12}$, the operation \textbf{addition modulo 12} $+_{12}$ is defined as
\[
a +_{12} b = c \quad\text{or}\quad a + b = c \pmod{12}
\]
where $c$ is the remainder when $a + b$ is divided by $12$.
\item This resembles finding the time after $n$ hours, where $0$ represent 12:00 AM or PM.
\end{itemize}
\end{frame}
\begin{frame}{Addition Modulo Twelve (12) Table}
\begin{block}{Exercise}
\justifying
Construct the operation table between elements of $\mathbb{Z}_{12}$ with addition modulo $12$ as the operation.
\end{block}
\end{frame}
\section*{Groups}
\subsection{Binary Operation}
\begin{frame}{Binary Operation}
\justifying
\begin{definition}
\justifying
A \textbf{binary operation} on a set $S$ is a function that assigns each ordered pair of elements of $S$ to an element of $S$.
\end{definition}
\pause
\begin{definition}[Restated]
\justifying
A \textbf{binary operation} or \textbf{law of composition} on a set $S$ is a function from $S \times S$ into $S$.
\end{definition}
\pause
The condition which maps an ordered pair from $S$ to an element in $S$ is called the \textbf{closure property}. In this case, we say that $S$ is \textbf{closed under the binary operation}.
\end{frame}
\begin{frame}{Remarks}
\justifying
Let $\star$ be a binary operation on $S$. We denote the image $\star\left((a, b)\right)$ of each ordered pair $(a, b) \in S \times S$ by $a \star b$.
\end{frame}
\begin{frame}{Familiar Examples of Binary Operations}
\begin{enumerate}
\justifying
\item Addition of integers is a binary operation.
\item Subtraction of integers is \_\_\_\_\_\_\_\_\_ binary operation.
\item Subtraction of positive integers is \_\_\_\_\_\_\_\_\_ binary operation.
\item Multiplication of integers is \_\_\_\_\_\_\_\_\_ binary operations.
\item The integers from the previous examples can be replaced by \_\_\_\_\_\_\_\_\_ numbers or \_\_\_\_\_\_\_\_\_ numbers.
\item Division of integers is \_\_\_\_\_\_\_\_\_ binary operation.
\end{enumerate}
\end{frame}
\begin{frame}{Familiar Examples of Binary Operations}
\begin{enumerate}
\justifying
\item Addition of integers is a binary operation.
\item Subtraction of integers is a binary operation.
\item Subtraction of positive integers is not a binary operation.
\item Multiplication of integers are binary operations.
\item The integers from the previous examples can be replaced by rational numbers or real numbers.
\item Division of integers is not a binary operation.
\end{enumerate}
\end{frame}
\begin{frame}{Other Examples of Binary Operations}
\begin{enumerate}
\justifying
\item The operations addition modulo $n$ and multiplication modulo $n$ on
\[
\mathbb{Z}_n := \{0, 1, \dots, n - 1\}
\]
are binary operations.
\pause
\item Let $M(\mathbb{R})$ be the set of all matrices with real entries. The usual matrix addition is not a binary operation on $M(\mathbb{R})$. The set $M_{m \times n}(\mathbb{Q})$, containing all $m \times n$ matrices with rational entries, is closed under the usual matrix addition.
\pause
\item We define an operation $*$ on $\mathbb{Z}^+$ by $a*b = \min\{a, b\}$. The set $\mathbb{Z}^+$ is closed under $*$. (This operation is programmed into modern GPS systems.)
\pause
\item We also define $*^{\prime}$ as an operation on $\mathbb{Z}^+$ such that $a *^{\prime} b = a$. The set $\mathbb{Z}^+$ is also closed under $*^{\prime}$.
\end{enumerate}
\end{frame}
\begin{frame}{Induced Operation on a Subset}
\begin{definition}
\justifying
Let $*$ be a binary operation on $S$ and $H$ be a subset of $S$. The binary operation on $H$ given by restricting $*$ to $H$ is the \textbf{induced operation} of $*$ on $H$.
\end{definition}
\pause
\begin{definition}[Restated]
\justifying
Let $*$ be a binary operation on $S$. We say that $*$ is an \textbf{induced operation} on $H \subset S$ if $H$ is closed under $*$.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The set $\mathbb{Z}$ is \_\_\_\_\_\_\_\_\_ under ordinary subtraction $-$ but $\mathbb{Z}^+ \subset \mathbb{Z}$ is \_\_\_\_\_\_\_\_\_ under $-$.
\pause
\item The set $3\mathbb{Z}$ containing integer multiples of $3$ under the induced operation on $(\mathbb{Z}, +)$ is \_\_\_\_\_\_\_\_\_ induced operation on $3\mathbb{Z}$.
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The set $\mathbb{Z}$ is closed under ordinary subtraction $-$ but $\mathbb{Z}^+ \subset \mathbb{Z}$ is not closed under $-$.
\pause
\item The set $3\mathbb{Z}$ containing integer multiples of $3$ under the induced operation on $(\mathbb{Z}, +)$ is an induced operation on $3\mathbb{Z}$.
\pause
\end{enumerate}
\uncover<3->{
\begin{block}{Exercise}
\justifying
Let $+$ and $\cdot$ denote addition and multiplication respectively on $\mathbb{Z}$. Define the set $$H = \{n^2 : n \in \mathbb{Z}^+\}.$$ Prove that $H$ is closed under $\cdot$ but not closed under $+$.
\end{block}
}
\end{frame}
\begin{frame}{Commutative Binary Operation}
\begin{definition}
\justifying
A binary operation $*$ on a set $S$ is \textbf{commutative} if $$a * b = b * a$$ for all $a$ and $b$ in $S$.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The operations addition and multiplication on the sets $\mathbb{Z}^+$, $\mathbb{Z}$, $\mathbb{Q}^+$, $\mathbb{Q}$, $\mathbb{R}^+$, and $\mathbb{R}$ are \_\_\_\_\_\_\_\_\_ commutative binary operations.
\item Consider the binary operation $*^{\prime}$ on $\mathbb{Z}^+$ where $a *^{\prime} b = a$. The binary operation $*^{\prime}$ is \_\_\_\_\_\_\_\_\_ commutative.
\item Let $+$ be a binary operation defined on $\mathbb{R} \times \mathbb{R}$ such that $$(a, b) + (c, d) = (a + c, b + d).$$ Show that $+$ is commutative.
\item Let $*$ be a binary operation defined on $\mathbb{Z}$ such that $$a * b = 2ab + 3.$$ Is $*$ commutative?
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The operations addition and multiplication on the sets $\mathbb{Z}^+$, $\mathbb{Z}$, $\mathbb{Q}^+$, $\mathbb{Q}$, $\mathbb{R}^+$, and $\mathbb{R}$ are commutative binary operations.
\pause
\item Consider the binary operation $*^{\prime}$ on $\mathbb{Z}^+$ where $a *^{\prime} b = a$. The binary operation $*^{\prime}$ is not commutative.
\pause
\item Let $+$ be a binary operation defined on $\mathbb{R} \times \mathbb{R}$ such that $$(a, b) + (c, d) = (a + c, b + d).$$ Commutativity of $+$ follows from the commutativity of $+$ in $\mathbb{R}$.
\pause
\item Let $*$ be a binary operation defined on $\mathbb{Z}$ such that $$a * b = 2ab + 3.$$ The operation $*$ is commutative.
\end{enumerate}
\end{frame}
\begin{frame}{Associative Binary Operation}
\begin{definition}
\justifying
A binary operation on a set $S$ is \textbf{associative} if $$(a * b) * c = a * (b * c)$$ for all $a, b$, and $c$ in $S$.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\item The operations addition and multiplication on the sets $\mathbb{Z}^+$, $\mathbb{Z}$, $\mathbb{Q}^+$, $\mathbb{Q}$, $\mathbb{R}^+$, and $\mathbb{R}$ are \_\_\_\_\_\_\_\_\_ binary operations.
\item Consider the binary operation $*^{\prime}$ on $\mathbb{Z}^+$ where $a * b = \min\{a, b\}$. The binary operation $*$ is \_\_\_\_\_\_\_\_\_.
\item Let $F$ be the set of all real-valued functions with domain $\mathbb{R}$. The operations addition, subtraction, multiplication, and composition for functions are \_\_\_\_\_\_\_\_\_ binary operations.
\item Let $*$ be the binary operation on $\mathbb{R}$ where $a * b = ab + a + b$. Is $*$ associative?
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The operations addition and multiplication on the sets $\mathbb{Z}^+$, $\mathbb{Z}$, $\mathbb{Q}^+$, $\mathbb{Q}$, $\mathbb{R}^+$, and $\mathbb{R}$ are associative binary operations.
\pause
\item Consider the binary operation $*^{\prime}$ on $\mathbb{Z}^+$ where $a * b = \min\{a, b\}$. The binary operation $*$ is associative.
\pause
\item Let $F$ be the set of all real-valued functions with domain $\mathbb{R}$. The operations addition, multiplication, and composition for functions are associative binary operations.
\pause
\item Let $*$ be the binary operation on $\mathbb{R}$ where $a * b = ab + a + b$. Is $*$ associative?
\end{enumerate}
\end{frame}
\begin{frame}{Identity Element for a Binary Operation}
\begin{definition}
\justifying
Let $*$ be a binary operation on a set $S$. An element $e \in S$ is called an \textbf{identity element} for $*$ if $$a * e = e * a = a$$ for all $a \in S$.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The element \_\_\_\_\_\_\_\_\_ is an identity element for $\times$ while the element \_\_\_\_\_\_\_\_\_ is an identity element with respect to $+$.
\item The set $Z^*$ has \_\_\_\_\_\_\_\_\_ with respect to $+$.
\item The set $M_{m \times n}(\mathbb{R})$ under the usual matrix addition has \_\_\_\_\_\_\_\_\_.
\item The operation $*^{\prime}$ on $\mathbb{Z}^+$ where $a *^{\prime} b = a$ has \_\_\_\_\_\_\_\_\_.
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The element $1 \in \mathbb{Z}_n, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ is an identity element for $\times$ while the element $0 \in \mathbb{Z}_n, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ is an identity element with respect to $+$.
\pause
\item However, the set $Z^*$ has no identity element with respect to $+$.
\pause
\item The set $M_{m \times n}(\mathbb{R})$ under the usual matrix addition has an identity element given by \textbf{zero matrix} defined as a matrix whose entries are all zero.
\pause
\item The operation $*^{\prime}$ on $\mathbb{Z}^+$ where $a *^{\prime} b = a$ has no identity element.
\end{enumerate}
\end{frame}
\begin{frame}{Uniqueness of Identity}
\begin{theorem}
\justifying
A set with binary operation $*$ has at most one identity element.
\end{theorem}
\pause
\begin{proof}
\justifying
Let $S$ be a set closed under $*$. If there is no identity element for $*$, then the conclusion holds. Suppose that $e_1$ is an identity element for $*$. Furthermore, we assume that $e_2$ is another identity element for $*$. By definition, $e_1$ and $e_2$ must be in $S$. Also, for all $a \in S$,
\[
a * e_1 = e_1 * a = a
\]
and
\[
e_2 * a = a * e_2 = a.
\]
Thus, $e_1 = e_2 * e_1 = e_1 * e_2 = e_2$.
\end{proof}
\end{frame}
\begin{frame}{Language}
\justifying
Let $A$ be a set which is called an \textbf{alphabet}. We define
\[
A^n = \{a_{1}a_{2}\dots a_{n} : a_i \in A\}
\]
to be the set of all sequences (or strings) of $n$ elements of $A$. Elements of $A^n$ are called \textbf{words} of length $n$ over $A$. The empty sequence, denoted by $\Lambda$, is a word of length $0$. Moreover, we denote the set of all words over $A$ as
\[
FM(A) = \bigcup_{n = 0}^{\infty}A^n
\]
where $A^0 = \{\Lambda\}$.
\end{frame}
\begin{frame}{String Concatenation}
\justifying
We define the operation $*$ on $FM(A)$, called \textbf{string concatenation}, by
\[
a_1 a_2 \dots a_n * b_1 b_2 \dots b_m = a_1 a_2 \dots a_n b_1 b_2 \dots b_m.
\]
\begin{block}{Exercise}
\justifying
Show that the operation string concatenation $*$ on the set $FM(A)$ is an associative binary operation with an identity element. The set $FM(A)$ equipped with $*$ is called the \textbf{free monoid generated by the set $\boldsymbol{A}$}. For more information, you can read about formal language theory.
\end{block}
\end{frame}
\begin{frame}{Inverse of an Element}
\begin{definition}
\justifying
Let $x$ be an element in a set $S$ and $*$ be a binary operation on $S$. Suppose that $e$ is an identity element with respect to $*$. The \textbf{inverse} of $x$ is an element $x^{\prime} \in S$ such that $x * x^{\prime} = x^{\prime} * x = e$.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The inverse of the element $2 \in \mathbb{Z}$ under usual addition is \_\_\_\_\_\_\_\_\_. Moreover, the inverse of the same element in $\mathbb{Z}_n$ under addition modulo $n$ is \_\_\_\_\_\_\_\_\_. In general, the inverse of any $a \in \mathbb{Z}$ is \_\_\_\_\_\_\_\_\_ and any $a \in \mathbb{Z}_n$ is \_\_\_\_\_\_\_\_\_.
\item The inverse of the element $2 \in \mathbb{Z}$ under usual multiplication \_\_\_\_\_\_\_\_\_. However, the inverse of the same element in $\mathbb{Q}$ under usual multiplication is \_\_\_\_\_\_\_\_\_. In general, the inverse of any $a \in \mathbb{Q}$ is \_\_\_\_\_\_\_\_\_.
\item Any matrix $M$ in $M_{m \times n}(\mathbb{R})$ has inverse, with respect to the usual matrix addition, given by \_\_\_\_\_\_\_\_\_.
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The inverse of the element $2 \in \mathbb{Z}$ under usual addition is $-2$. Moreover, the inverse of the same element in $\mathbb{Z}_n$ under addition modulo $n$ is $n - 2$. In general, the inverse of any $a \in \mathbb{Z}$ is $-a$ and any $a \in \mathbb{Z}_n$ is $n - a$.
\pause
\item The inverse of the element $2 \in \mathbb{Z}$ under usual multiplication does not exist. However, the inverse of the same element in $\mathbb{Q}$ under usual multiplication is $\nicefrac{1}{2}$. In general, the inverse of any $a \in \mathbb{Q}$ is $\nicefrac{1}{a}$.
\pause
\item Any matrix $M$ in $M_{m \times n}(\mathbb{R})$ has inverse, with respect to the usual matrix addition, given by the matrix whose entries consists of the inverse of each entry in $M$.
\end{enumerate}
\end{frame}
\begin{frame}{Other Terminologies}
\begin{enumerate}
\justifying
\item A set $S$, together with one or more operations on $S$, is called \textbf{algebraic system} or \textbf{algebraic structure}. The set $S$ is called the \textbf{underlying set} of the structure.
\item A set equipped with one binary operation $*$ is referred to as a \textbf{magma} or a \textbf{groupoid} or \textbf{quasigroup}, denoted by $(S, *)$.
\item A \textbf{semigroup} is an algebraic structure consisting of a non-empty set equipped with an associative binary operation.
\item A \textbf{monoid} is a semigroup having an identity element.
\item The identity element may also be called the \textbf{unit element}.
\end{enumerate}
\end{frame}
\subsection{Terminologies and Examples}
\begin{frame}{Definition of a Group}
\justifying
\begin{definition}
\justifying
A (nonempty) set $G$ together with a binary operation $*$ is a \textbf{group}, denoted by $(G, *)$, under $*$ if the following properties holds:
\begin{itemize}
\justifying
\item $a * (b * c) = (a * b) * c$ for all $a, b, c \in G$,
\item there exists $e \in G$ such that $a * e = e * a = a$ for all $a \in G$, and
\item for each $a \in G$, there exists $a^{-1} \in G$ where $a * a^{-1} = a^{-1} * a = e$.
\end{itemize}
\end{definition}
The four defining postulates for a group are referred to as the \textbf{group axioms}. A group with only one element (or consisting only of the identity element) is called a \textbf{trivial group}.
\end{frame}
\begin{frame}{Remarks}
\begin{definition}[Restated]
\justifying
A \textbf{group} is a nonempty set $G$ under an associative binary operation, such that $G$ contains an identity element for the operation, and each element of $G$ has an inverse in $G$.
\end{definition}
\pause
\begin{definition}
\justifying
Let $(G, *)$ be a group. The cardinality of $G$ is called the \textbf{order} of $G$. We say that $G$ is a \textbf{finite group} if its order is finite; otherwise, it is an \textbf{infinite group}.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The sets $\mathbb{Z}$, $\mathbb{Q}$, and $\mathbb{R}$ are \_\_\_\_\_\_\_\_\_ under the usual addition. Moreover, the set $\mathbb{Q}^+$ and the set of nonzero real numbers $R^{*}$ are \_\_\_\_\_\_\_\_\_ under the usual multiplication.
\item The set $\mathbb{Z}$ under ordinary multiplication is \_\_\_\_\_\_\_\_\_. The same set under ordinary subtraction is \_\_\_\_\_\_\_\_\_.
\item The set $\left(\mathbb{R}^+ - \mathbb{Q}\right) \ \cup \ \{1\}$ under usual multiplication is \_\_\_\_\_\_\_\_\_.
\item The set
\[
GL(2, \mathbb{R}) = \left\{\begin{bmatrix}a & b \\ c & d\end{bmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0\right\}
\]
consisting of $2 \times 2$ matrices with real entries and nonzero determinants is \_\_\_\_\_\_\_\_\_ under matrix multiplication.
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The sets $\mathbb{Z}$, $\mathbb{Q}$, and $\mathbb{R}$ are infinite groups under the usual addition. Moreover, the set $\mathbb{Q}^+$ and the set of nonzero real numbers $R^{*}$ are infinite groups under the usual multiplication.
\item The set $\mathbb{Z}$ under ordinary multiplication is not a group. The same set under ordinary subtraction is also not a group.
\pause
\item The set $\left(\mathbb{R}^+ - \mathbb{Q}\right) \cup \{1\}$ under usual multiplication is not a group.
\pause
\item The set
\[
GL(2, \mathbb{R}) = \left\{\begin{bmatrix}a & b \\ c & d\end{bmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0\right\}
\]
consisting of $2 \times 2$ matrices with real entries and nonzero determinants is an infinite group under matrix multiplication. This is called the \textbf{general linear group} of degree $2$ over $\mathbb{R}$.
\end{enumerate}
\end{frame}
\begin{frame}{More Examples}
\begin{enumerate}
\justifying
\item Consider the set $F$ consisting of all real-valued functions defined on $\mathbb{R}$. The algebraic structures $(F, +)$, $(F, -)$, $(F, \cdot)$, and $(F, \circ)$ are infinite groups.
\pause
\item For each positive integer $n$, $\mathbb{Z}_n$ is a finite group of order $n$ under addition modulo $n$.
\pause
\item Let $U(n) := \{x : \gcd(x, n) = 1 \text{ and } x < n\}$ where $n \in \mathbb{Z}^+$. The set $U(n)$ under multiplication modulo $n$ is a finite group of order $\phi(n)$ where $\phi$ is the Euler-phi number theoretic function. This group is called the \textbf{group of units} of $\mathbb{Z}_n$.
\pause
\item We can form a new group from two groups $(A, \oplus)$ and $(B, \otimes)$ through the \textbf{direct product} $(A \times B, \cdot)$ whose elements belong in the Cartesian product $A \times B$. The operation $\cdot$ on the direct group is defined as follows:
\[
(a_1, b_1) \cdot (a_2, b_2) = (a_1 \oplus a_2, b_1 \otimes b_2).
\]
\end{enumerate}
\end{frame}
\begin{frame}{Group under a Set Operation}
\begin{block}{Exercise}
\justifying
Let $S$ be a set with at least one element. The \textit{power set} $\mathcal{P}(S)$ of $S$ is defined as the collection of all subsets of $S$. In other words,
\[
\mathcal{P}(S) = \{A : A \subset S\}.
\]
Identify the group axioms not satisfied by the pair $(\mathcal{P}(S), \cup)$ where $\cup$ is the union operation of sets.
\end{block}
\end{frame}
\begin{frame}{Quaternion Group}
\begin{block}{Exercise}
\justifying
Let $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, and $K = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ where $i^2 = -1$.
\begin{enumerate}
\justifying
\item Verify that the relations $I^2 = J^2 = K^2 = -1$, $IJ = K$, $JK = I$, $KI = J$, $JI = -K$, $KJ = -I$, and $IK = -J$ hold.
\item Show that the set $Q_8 = \{\pm 1, \pm I, \pm J, \pm K\}$ is a group. This group is called the \textbf{quaternion group}.
\end{enumerate}
\end{block}
\end{frame}
\begin{frame}{Abelian Group}
\begin{definition}
\justifying
An \textbf{Abelian} or \textbf{commutative group} is a group $G$ that has a commutative binary operation. Otherwise, we say that $G$ is \textbf{non-Abelian} or \textbf{noncommutative}.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The sets $\mathbb{Z}$, $\mathbb{Q}$, and $\mathbb{R}$ are \_\_\_\_\_\_\_\_\_ groups under the usual addition. Moreover, the set $\mathbb{Q}^+$ and the set of nonzero real numbers $R^{*}$ are \_\_\_\_\_\_\_\_\_ group under the usual multiplication.
\item The general linear group of degree $2$ over $\mathbb{R}$ is \_\_\_\_\_\_\_\_\_ group.
\item The groups $(F, +)$, $(F, -)$, $(F, \cdot)$, and $(F, \circ)$ are \_\_\_\_\_\_\_\_\_.
\item The groups $\left(\mathbb{Z}_n, +_n\right)$ and $\left(\mathbb{Z}_n, \cdot_n\right)$, where $+_n$ and $\cdot_n$ denotes addition modulo $n$ and multiplication modulo $n$ respectively, are \_\_\_\_\_\_\_\_\_.
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item The sets $\mathbb{Z}$, $\mathbb{Q}$, and $\mathbb{R}$ are Abelian groups under the usual addition. Moreover, the set $\mathbb{Q}^+$ and the set of nonzero real numbers $R^{*}$ are Abelian groups under the usual multiplication.
\pause
\item The general linear group of degree $2$ over $\mathbb{R}$ is a non-Abelian group.
\pause
\item The groups $(F, -)$ and $(F, \circ)$ are non-Abelian.
\pause
\item The groups $\left(\mathbb{Z}_n, +_n\right)$ and $\left(\mathbb{Z}_n, \cdot_n\right)$, where $+_n$ and $\cdot_n$ denotes addition modulo $n$ and multiplication modulo $n$ respectively, are Abelian.
\end{enumerate}
\end{frame}
\begin{frame}{Exercises}
\begin{enumerate}
\justifying
\item Let $G = \mathbb{R}^+ - \{1\}$. Let $*$ be a function on $G$ defined by $a * b = a^{\ln b}$ for all $a$ and $b$ in $G$. Prove that $G$ is an Abelian group with respect to $*$.
\item Let $f_{m, b} : \mathbb{R} \rightarrow \mathbb{R}$ be a function where $f_{m, b}(x) = mx + b$. Show that the set $A = \{f_{m, b} : \mathbb{R} \rightarrow \mathbb{R} \ | \ m \neq 0\}$ of \textbf{affine functions} from $\mathbb{R}$ into $\mathbb{R}$ forms a non-Abelian group under composition of functions. Furthermore, show that the group $(A, \circ)$ is Abelian when $m = 1$.
\end{enumerate}
\end{frame}
\begin{frame}{Where Do We See Abelian Groups?}
\begin{itemize}
\justifying
\item The set of complex numbers $\mathbb{C} := \{a + bi : a, b \in \mathbb{R}\}$ under addition $+$ and multiplication $\cdot$ defined by
\[
(a + bi) + (c + di) = (a + c) + (b + d)i
\]
and
\[
(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i
\]
is an Abelian group. For more information, consult complex analysis references.
\item A vector space $V$ over a field $F$ is an algebraic system with two operations vector addition $+$ and scalar multiplication $\cdot$ that satisfies many properties similar to the field axioms. $(V, +)$ being an Abelian group is one of those properties. For more information, consult linear algebra references.
\end{itemize}
\end{frame}
\begin{frame}{Where Do We See Abelian Groups?}
\begin{itemize}
\justifying
\item A ring $(R, +, \cdot)$ is a set $R$ under a collection of two operations, $+$ and $\cdot$, namely \textbf{addition} and \textbf{multiplication} that also satisfies a certain number of conditions. One of the conditions states that $(R, +)$ must be Abelian. For more information, consult abtract algebra references.
\end{itemize}
\end{frame}
\subsection{Cayley Tables}
\begin{frame}{Table Representation of Binary Operations}
\justifying
For a finite set $G$, a binary operation $*$ on $G$ can be defined by a table. We list the elements in the top (left to right) and left side (top to bottom) in the same order. For instance, consider the table below which defines a binary operation $*$ on $G = \{a, b, c\}$ that follows the rule, $x * y$ where $x$ is an element in the left and $y$ is an element in the top, in computing the image under $*$.
\[
\begin{tabular}{ c | c | c | c}
$\ast$ & a & b & c \\
\hline
a & b & c & b \\
\hline
b & a & c & b \\
\hline
c & c & b & a
\end{tabular}.
\]
\end{frame}
\begin{frame}{Table Representation of Groups}
\justifying
\[
\begin{tabular}{ c | c | c | c}
$\ast$ & a & b & c \\
\hline
a & b & c & b \\
\hline
b & a & c & b \\
\hline
c & c & b & a
\end{tabular}.
\]
\begin{itemize}
\justifying
\item Operation $*$ is not commutative since $a * b = c \neq a = b * a$.
\pause
\item There is no identity element for $*$ since there exists no $e \in G$ such that $x * e = e * x = x$ for all $x$ in $G$.
\end{itemize}
\end{frame}
\begin{frame}{Table Representation of Groups (cont.)}
\begin{itemize}
\justifying
\item The binary operation $*$ is commutative if and only if the Cayley table is symmetric with respect to the main diagonal.
\pause
\item If the operation has an identity element, which is unique, then there exists a column and a row similar to the left and top sides respectively.
\pause
\item Verifying whether the operation is associative is a tedious process. We may use Light's associativity test but we omit it here since it is also a tedious approach.
\pause
\item The identity element and inverse of each element may be glanced through the Cayley table.
\end{itemize}
\end{frame}
\begin{frame}{Example (Klein 4-Group)}
\justifying
\[
\begin{tabular}{c|c|c|c|c}
$\ast$ & e & a & b & c \\
\hline
e & e & a & b & c \\
\hline
a & a & e & c & b \\
\hline
b & b & c & e & a \\
\hline
c & c & b & a & e
\end{tabular}
\]
Let $V = \{e, a, b, c\}$. The Cayley table shows the Abelian group $(V, \ast)$ under the binary operation $\ast$. The group is known as the \textbf{Klein four-group}.
\end{frame}
\begin{frame}{Exercises}
\begin{enumerate}
\justifying
\item Construct the Cayley table for the group $U(9)$ under multiplication modulo $9$ denoted by $\times_9$\footnotemark.
\begin{enumerate}
\item What is the identity element?
\item Determine the inverse of each element under $\times_9$.
\item Determine whether the group is Abelian or not.
\end{enumerate}
\end{enumerate}
\footnotetext[1]{The remainder when the product of the two numbers are divided by $9$.}
\end{frame}
\begin{frame}{Exercises}
Consider the set $S = \{a_1, \dots, a_6\}$ and the operation $\cdot$ on $S$ defined by the following table.
\begin{table}
\begin{tabular}{c|c|c|c|c|c|c}
$\cdot$ & $a_1$ & $a_2$ & $a_3$ & $a_4$ & $a_5$ & $a_6$ \\
\hline
$a_1$ & $a_1$ & $a_2$ & $a_3$ & $a_4$ & $a_5$ & $a_6$ \\
\hline
$a_2$ & $a_2$ & $a_1$ & $a_5$ & $a_6$ & $a_3$ & $a_4$ \\
\hline
$a_3$ & $a_3$ & $a_6$ & $a_1$ & $a_5$ & $a_4$ & $a_2$ \\
\hline
$a_4$ & $a_4$ & $a_5$ & $a_6$ & $a_1$ & $a_2$ & $a_3$ \\
\hline
$a_5$ & $a_5$ & $a_4$ & $a_2$ & $a_3$ & $a_6$ & $a_1$ \\
\hline
$a_6$ & $a_6$ & $a_3$ & $a_4$ & $a_2$ & $a_1$ & $a_5$ \\
\hline
\end{tabular}
\end{table}
Is $S$ a group under $\cdot$? If so, determine the identity element and the inverse of each non-identity element.
\end{frame}
\subsection{Properties of a Group}
\begin{frame}{Weaker Group Definition}
\begin{theorem}
\justifying
A nonempty set $G$ under an associative binary operation, such that $G$ contains a left identity element, and each element of $G$ has a left inverse in $G$ is a group.
\end{theorem}
\end{frame}
\begin{frame}
\begin{proof}
\justifying
Let $g^{-1}$ be the left inverse of every $g \in G$ and $e$ be a left identity. Observe that
\begin{align*}
g * g^{-1} &= (e * g) * g^{-1} = \left[\left(g^{-1}\right)^{-1} * g^{-1}\right] * g] * g^{-1} \\ &= \left(g^{-1}\right)^{-1} * \left(g^{-1} * g\right) * g^{-1} = \left(g^{-1}\right)^{-1} * g^{-1} = e.
\end{align*}
This shows that $g^{-1}$ is also the right inverse for $g$. Moreover,
\begin{align*}
g * e = g * (g^{-1} * g) = e * g = g.
\end{align*}
Thus, $e$ is also the right identity. The conclusion follows.
\end{proof}
\end{frame}
\begin{frame}{Uniqueness of Solutions}
\begin{theorem}
\justifying
Let $(G, *)$ be a group. Suppose $a$ and $b$ are any elements of $G$. The linear equations $a * x = b$ and $y * a = b$ have unique solutions $x$ and $y$ in $G$. In particular, the inverse of every element in a group are unique.
\end{theorem}
\pause
\begin{proof}
\justifying
The linear equations $a * x = b$ and $y * a = b$ has respective solutions given by $x = a^{-1}b \in G$ and $y = ba^{-1} \in G$. Let $x_1$ and $x_2$ be solutions of $a * x = b$. Hence, $a * x_1 = a * x_2$. Thus, $a^{-1} * (a * x_1) = a^{-1} * (a * x_2)$ or $x_1 = x_2$. Similar arguments can be made for the linear equation $y * a = b$. Therefore, the linear equations have unique solutions in $G$. In particular, if we let $b = e$, where $e$ is the identity element of $(G, *)$, then $a * x = y * a = e$ has unique solutions in $G$.
\end{proof}
\end{frame}
\begin{frame}{Notations}
\justifying
\begin{itemize}
\justifying
\item For simplicity, we omit the operation $*$ and write $ab$ to denote $a * b$. We also write a group $(G, *)$ simply as $G$ assuming the binary operation is well-understood.
\item Moreover, the expression $a^n$ for a positive integer $n$ and an element $a \in G$ denotes the repeated application of the binary operation
\[
aa\cdots a \ \ (n \text{ factors})
\]
and $a^n = e$ for $n = 0$. When $n$ is negative,
\[
a^n = \left(a^{-1}\right)^{|n|}.
\]
\end{itemize}
\end{frame}
\begin{frame}{Exponential Laws}
\begin{theorem}
Let $G$ be a group. Suppose that $a \in G$. For any integers $n$ and $m$, we have
\begin{enumerate}
\item $a^{n}a^m = a^{n + m}$, and
\item $\left(a^n\right)^m = a^{nm}$.
\end{enumerate}
\end{theorem}
\end{frame}
\begin{frame}{Cancellation Laws}
\begin{theorem}
\justifying
For a group $G$, $ba = ca$ implies $b = c$ and $ca = cb$ implies $a = b$ for all $a, b$, and $c$ in $G$. In other words, the \textbf{left} and \textbf{right cancellation laws} hold.
\end{theorem}
\pause
\begin{proof}
\justifying
Since $a$ and $c$ are in $G$, their inverses exists. Hence, $$(ba)*a^{-1} = (ca)*a^{-1} \text{ and } c^{-1}*(ca) = c^{-1}*(cb)$$ holds. Using the associative law and simplifying, we must have $b = c$ and $a = b$ respectively.
\end{proof}
\end{frame}
\begin{frame}{Remarks}
\begin{itemize}
\justifying
\item A magma is \textbf{left cancellative} (or \textbf{right cancellative}) if the left cancellation (or right cancellation) law holds.
\item The previous theorem states that a group must be left and right cancellative.
\item This result shows that an element must only appear once each column and each row for a Cayley table representation of a group.
\item In combinatorics, a \textbf{Latin square} is an $n \times n$ array filled with $n$ different symbols such that each symbol appears exactly once in each column and exactly once in each row.
\end{itemize}
\end{frame}
\begin{frame}{Inverse of the Inverse}
\begin{theorem}
For each element $a$ in a group $G$, the inverse $\left(a^{-1}\right)^{-1}$ of $a^{-1}$ is $a$.
\end{theorem}
\pause
\begin{proof}
\justifying
The theorem follows from the definition and the uniqueness of the inverse of a group element.
\end{proof}
\end{frame}
\begin{frame}{Generalized Associative Law}
\begin{theorem}
\justifying
For any elements $a_1, a_2, \dots, a_n \in (G, *)$ where $(G, *)$ is a group under the binary operation $*$, the value $a_1 * a_2 * \dots * a_n$ is independent of how the expression is bracketed.
\end{theorem}
\end{frame}
\begin{frame}{Socks-Shoes Property}
\begin{theorem}[Socks-Shoes Property]
For any elements $a$ and $b$ of a group, $(ab)^{-1} = b^{-1}a^{-1}$.
\end{theorem}
\pause
\begin{proof}
\justifying
Note that
\[
(ab)\left(b^{-1}a^{-1}\right) = a\left(bb^{-1}\right)a^{-1} = aea^{-1} = aa^{-1} = e
\]
and
\[
\left(b^{-1}a^{-1}\right)(ab) = b^{-1}\left(a^{-1}a\right)b = b^{-1}eb = b^{-1}b = e.
\]
Since the inverse of a group element is unique, $(ab)^{-1} = b^{-1}a^{-1}$.
\end{proof}
\end{frame}
\begin{frame}{Exercises}
\begin{enumerate}
\item Let $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and assume that $G$ is a group under a binary operation $*$ that satisfies the following properties:
\begin{itemize}
\item $a * b \leq a + b$ for all $a, b \in G$, and
\item $a * a = 0$ for all $a \in G$.
\end{itemize}
Write out the Cayley table for $G$.
\end{enumerate}
\end{frame}
\section*{Subgroups}
\subsection{Terminologies and Examples}
\begin{frame}{Definition}
\begin{definition}
\justifying
A subset $H$ of a group $G$ is a \textbf{subgroup} of $G$ if $H$ is a group under the induced operation from $G$. We let $H \leq G$ denote that $H$ is a subgroup of $G$. Also, let $H < G$ denote that $H \leq G$ and $H \neq G$.
\end{definition}
\end{frame}
\begin{frame}{Examples}
\begin{enumerate}
\justifying
\item $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.
\item $(\mathbb{Q}^+, \cdot)$ is a subgroup of $(\mathbb{R}^+, \cdot)$.
\item The set of continuous real-valued functions with domain $\mathbb{R}$ is a subgroup of $F$ under function addition.
\end{enumerate}
\end{frame}