-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinference.py
265 lines (228 loc) · 11 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# ----------------------------------------------------------------------------------------------
# CoFormer Official Code
# Copyright (c) Junhyeong Cho. All Rights Reserved
# Licensed under the Apache License 2.0 [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
"""
Run an inference on a custom image
"""
import argparse
import random
import numpy as np
import torch
import datasets
import util.misc as utils
import cv2
import skimage
import skimage.transform
import nltk
import re
from util import box_ops
from PIL import Image
from torch.utils.data import DataLoader
from datasets import build_dataset
from models import build_model
from pathlib import Path
from nltk.corpus import wordnet as wn
def noun2synset(noun):
return wn.synset_from_pos_and_offset(noun[0], int(noun[1:])).name() if re.match(r'n[0-9]*', noun) else "'{}'".format(noun)
def visualize_bbox(image_path=None, num_roles=None, noun_labels=None, pred_bbox=None, pred_bbox_conf=None, output_dir=None):
image = cv2.imread(image_path)
image_name = image_path.split('/')[-1].split('.')[0]
h, w = image.shape[0], image.shape[1]
red_color = (232, 126, 253)
green_color = (130, 234, 198)
blue_color = (227,188, 134)
orange_color = (98, 129, 240)
brown_color = (79, 99, 216)
purple_color = (197, 152, 173)
colors = [red_color, green_color, blue_color, orange_color, brown_color, purple_color]
white_color = (255, 255, 255)
line_width = 4
# the value of pred_bbox_conf is logit, not probability.
for i in range(num_roles):
if pred_bbox_conf[i] >= 0:
# bbox
pred_left_top = (int(pred_bbox[i][0].item()), int(pred_bbox[i][1].item()))
pred_right_bottom = (int(pred_bbox[i][2].item()), int(pred_bbox[i][3].item()))
lt_0 = max(pred_left_top[0], line_width)
lt_1 = max(pred_left_top[1], line_width)
rb_0 = min(pred_right_bottom[0], w-line_width)
rb_1 = min(pred_right_bottom[1], h-line_width)
lt = (lt_0, lt_1)
rb = (rb_0, rb_1)
cv2.rectangle(img=image, pt1=lt, pt2=rb, color=colors[i], thickness=line_width, lineType=-1)
# label
label = noun_labels[i].split('.')[0]
text_size, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.4, 1)
p1 = (lt[0], lt[1] - text_size[1])
cv2.rectangle(img=image, pt1=(p1[0], (p1[1]-2-baseline)), pt2=((p1[0]+text_size[0]), (p1[1]+text_size[1])), color=colors[i], thickness=-1)
cv2.putText(image, label, (p1[0], p1[1] + baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.4, white_color, 1, 8)
# save image
cv2.imwrite("{}/{}_result.jpg".format(output_dir, image_name), image)
return
def process_image(image):
mean = np.array([[[0.485, 0.456, 0.406]]])
std = np.array([[[0.229, 0.224, 0.225]]])
image = (image.astype(np.float32) - mean) / std
min_side, max_side= 512, 700
rows_orig, cols_orig, cns_orig = image.shape
smallest_side = min(rows_orig, cols_orig)
scale = min_side / smallest_side
largest_side = max(rows_orig, cols_orig)
if largest_side * scale > max_side:
scale = max_side / largest_side
# resize the image with the computed scale
image = skimage.transform.resize(image, (int(round(rows_orig * scale)), int(round((cols_orig * scale)))))
rows, cols, cns = image.shape
new_image = np.zeros((rows, cols, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
image = torch.from_numpy(new_image)
shift_1 = int((700 - cols) * 0.5)
shift_0 = int((700 - rows) * 0.5)
max_height = 700
max_width = 700
padded_imgs = torch.zeros(1, max_height, max_width, 3)
padded_imgs[0, shift_0:shift_0+image.shape[0], shift_1:shift_1+image.shape[1], :] = image
padded_imgs = padded_imgs.permute(0, 3, 1, 2)
height = torch.tensor(int(image.shape[0])).float()
width = torch.tensor(int(image.shape[1])).float()
shift_0 = torch.tensor(shift_0).float()
shift_1 = torch.tensor(shift_1).float()
scale = torch.tensor(scale).float()
mw = torch.tensor(max_width).float()
mh = torch.tensor(max_height).float()
return (utils.nested_tensor_from_tensor_list(padded_imgs),
{'width': width,
'height': height,
'shift_0': shift_0,
'shift_1': shift_1,
'scale': scale,
'max_width': mw,
'max_height': mh})
def inference(model, device, image_path=None, inference=False, idx_to_verb=None, idx_to_role=None,
vidx_ridx=None, idx_to_class=None, output_dir=None):
model.eval()
image_name = image_path.split('/')[-1].split('.')[0]
# load image & process
image = Image.open(image_path)
image = image.convert('RGB')
image = np.array(image)
image = image.astype(np.float32) / 255.0
image, info = process_image(image)
image = image.to(device)
info = {k: v.to(device) if type(v) is not str else v for k, v in info.items()}
output = model(image, inference=inference)
pred_verb = output['pred_verb'][0]
pred_noun = output['pred_noun_3'][0]
pred_bbox = output['pred_bbox'][0]
pred_bbox_conf = output['pred_bbox_conf'][0]
top1_verb = torch.topk(pred_verb, k=1, dim=0)[1].item()
roles = vidx_ridx[top1_verb]
num_roles = len(roles)
verb_label = idx_to_verb[top1_verb]
role_labels = []
noun_labels = []
for i in range(num_roles):
top1_noun = torch.topk(pred_noun[i], k=1, dim=0)[1].item()
role_labels.append(idx_to_role[roles[i]])
noun_labels.append(noun2synset(idx_to_class[top1_noun]))
# convert bbox
mw, mh = info['max_width'], info['max_height']
w, h = info['width'], info['height']
shift_0, shift_1, scale = info['shift_0'], info['shift_1'], info['scale']
pb_xyxy = box_ops.swig_box_cxcywh_to_xyxy(pred_bbox.clone(), mw, mh, device=device)
for i in range(num_roles):
pb_xyxy[i][0] = max(pb_xyxy[i][0] - shift_1, 0)
pb_xyxy[i][1] = max(pb_xyxy[i][1] - shift_0, 0)
pb_xyxy[i][2] = max(pb_xyxy[i][2] - shift_1, 0)
pb_xyxy[i][3] = max(pb_xyxy[i][3] - shift_0, 0)
# locate predicted boxes within image (processing w/ image width & height)
pb_xyxy[i][0] = min(pb_xyxy[i][0], w)
pb_xyxy[i][1] = min(pb_xyxy[i][1], h)
pb_xyxy[i][2] = min(pb_xyxy[i][2], w)
pb_xyxy[i][3] = min(pb_xyxy[i][3], h)
pb_xyxy /= scale
# outputs
with open("{}/{}_result.txt".format(output_dir, image_name), "w") as f:
text_line = "verb: {} \n".format(verb_label)
f.write(text_line)
for i in range(num_roles):
text_line = "role: {}, noun: {} \n".format(role_labels[i], noun_labels[i])
f.write(text_line)
f.close()
visualize_bbox(image_path=image_path, num_roles=num_roles, noun_labels=noun_labels, pred_bbox=pb_xyxy, pred_bbox_conf=pred_bbox_conf, output_dir=output_dir)
def get_args_parser():
parser = argparse.ArgumentParser('Set CoFormer', add_help=False)
# Backbone parameters
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--position_embedding', default='learned', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# Transformer parameters
parser.add_argument('--num_glance_enc_layers', default=3, type=int,
help="Number of encoding layers in Glance Transformer")
parser.add_argument('--num_gaze_s1_dec_layers', default=3, type=int,
help="Number of decoding layers in Gaze-Step1 Transformer")
parser.add_argument('--num_gaze_s1_enc_layers', default=3, type=int,
help="Number of encoding layers in Gaze-Step1 Transformer")
parser.add_argument('--num_gaze_s2_dec_layers', default=3, type=int,
help="Number of decoding layers in Gaze-Step2 Transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.15, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
# Dataset parameters
parser.add_argument('--dataset_file', default='swig')
parser.add_argument('--swig_path', type=str, default="SWiG")
parser.add_argument('--image_path', default='inference/image.jpg',
help='path where the test image is')
# Etc...
parser.add_argument('--inference', default=True)
parser.add_argument('--output_dir', default='CoFormer_inference',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for inference')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--saved_model', default='CoFormer_checkpoint.pth',
help='path where saved model is')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
if not args.inference:
assert False, f"Please set inference to True"
# fix the seed
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# num noun classes in train dataset
dataset_train = build_dataset(image_set='train', args=args)
args.num_noun_classes = dataset_train.num_nouns()
# build model
device = torch.device(args.device)
model, _ = build_model(args)
model.to(device)
checkpoint = torch.load(args.saved_model, map_location='cpu')
model.load_state_dict(checkpoint['model'])
inference(model, device, image_path=args.image_path, inference=args.inference,
idx_to_verb=args.idx_to_verb, idx_to_role=args.idx_to_role, vidx_ridx=args.vidx_ridx,
idx_to_class=args.idx_to_class, output_dir=args.output_dir)
return
if __name__ == '__main__':
nltk.download('wordnet')
parser = argparse.ArgumentParser('CoFormer inference script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)