-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathrun_epoch.py
78 lines (69 loc) · 2.75 KB
/
run_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
import model_reader as reader
import numpy as np
def run_epoch(session, m, words, pos, chunk, pos_vocab_size, chunk_vocab_size,
verbose=False, valid=False, model_type='JOINT'):
"""Runs the model on the given data."""
epoch_size = ((len(words) // m.batch_size) - 1) // m.num_steps
start_time = time.time()
comb_loss = 0.0
pos_total_loss = 0.0
chunk_total_loss = 0.0
iters = 0
accuracy = 0.0
pos_predictions = []
pos_true = []
chunk_predictions = []
chunk_true = []
for step, (x, y_pos, y_chunk) in enumerate(reader.create_batches(words, pos, chunk, m.batch_size,
m.num_steps, pos_vocab_size, chunk_vocab_size)):
if model_type == 'POS':
if valid:
eval_op = tf.no_op()
else:
eval_op = m.pos_op
elif model_type == 'CHUNK':
if valid:
eval_op = tf.no_op()
else:
eval_op = m.chunk_op
else:
if valid:
eval_op = tf.no_op()
else:
eval_op = m.joint_op
joint_loss, _, pos_int_pred, chunk_int_pred, pos_int_true, \
chunk_int_true, pos_loss, chunk_loss = \
session.run([m.joint_loss, eval_op, m.pos_int_pred,
m.chunk_int_pred, m.pos_int_targ, m.chunk_int_targ,
m.pos_loss, m.chunk_loss],
{m.input_data: x,
m.pos_targets: y_pos,
m.chunk_targets: y_chunk})
comb_loss += joint_loss
chunk_total_loss += chunk_loss
pos_total_loss += pos_loss
iters += 1
if verbose and step % 5 == 0:
if model_type == 'POS':
costs = pos_total_loss
cost = pos_loss
elif model_type == 'CHUNK':
costs = chunk_total_loss
cost = chunk_loss
else:
costs = comb_loss
cost = joint_loss
print("Type: %s,cost: %3f, total cost: %3f" % (model_type, cost, costs))
pos_int_pred = np.reshape(pos_int_pred, [m.batch_size, m.num_steps])
pos_predictions.append(pos_int_pred)
pos_true.append(pos_int_true)
chunk_int_pred = np.reshape(chunk_int_pred, [m.batch_size, m.num_steps])
chunk_predictions.append(chunk_int_pred)
chunk_true.append(chunk_int_true)
return (comb_loss / iters), pos_predictions, chunk_predictions, pos_true, \
chunk_true, (pos_total_loss / iters), (chunk_total_loss / iters)