forked from tevisgehr/EEG-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pipeline_2.py
241 lines (204 loc) · 6.99 KB
/
train_pipeline_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#train_pipeline
from eeg_learn_functions import *
import pandas as pd
import numpy as np
import scipy.stats as scs
import re
from numpy import genfromtxt
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
pd.options.display.max_columns = None
pd.options.display.precision = 4
theta = (4,8)
alpha = (8,12)
beta = (12,40)
def get_fft(snippet):
Fs = 128.0; # sampling rate
#Ts = len(snippet)/Fs/Fs; # sampling interval
snippet_time = len(snippet)/Fs
Ts = 1.0/Fs; # sampling interval
t = np.arange(0,snippet_time,Ts) # time vector
# ff = 5; # frequency of the signal
# y = np.sin(2*np.pi*ff*t)
y = snippet
# print('Ts: ',Ts)
# print(t)
# print(y.shape)
n = len(y) # length of the signal
k = np.arange(n)
T = n/Fs
frq = k/T # two sides frequency range
frq = frq[range(n//2)] # one side frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n//2)]
#Added in: (To remove bias.)
#Y[0] = 0
return frq,abs(Y)
def theta_alpha_beta_averages(f,Y):
theta_range = (4,8)
alpha_range = (8,12)
beta_range = (12,40)
theta = Y[(f>theta_range[0]) & (f<=theta_range[1])].mean()
alpha = Y[(f>alpha_range[0]) & (f<=alpha_range[1])].mean()
beta = Y[(f>beta_range[0]) & (f<=beta_range[1])].mean()
return theta, alpha, beta
def make_steps(samples,frame_duration,overlap):
'''
in:
samples - number of samples in the session
frame_duration - frame duration in seconds
overlap - float fraction of frame to overlap in range (0,1)
out: list of tuple ranges
'''
#steps = np.arange(0,len(df),frame_length)
Fs = 128
i = 0
intervals = []
samples_per_frame = Fs * frame_duration
while i+samples_per_frame <= samples:
intervals.append((i,i+samples_per_frame))
i = i + samples_per_frame - int(samples_per_frame*overlap)
return intervals
def make_frames(df,frame_duration):
'''
in: dataframe or array with all channels, frame duration in seconds
out: array of theta, alpha, beta averages for each probe for each time step
shape: (n-frames,m-probes,k-brainwave bands)
'''
Fs = 128.0
frame_length = Fs*frame_duration
frames = []
steps = make_steps(len(df),frame_duration,overlap)
for i,_ in enumerate(steps):
frame = []
if i == 0:
continue
else:
for channel in df.columns:
snippet = np.array(df.loc[steps[i][0]:steps[i][1],int(channel)])
f,Y = get_fft(snippet)
theta, alpha, beta = theta_alpha_beta_averages(f,Y)
frame.append([theta, alpha, beta])
frames.append(frame)
return np.array(frames)
locs_2d = [(-2.0,4.0),
(2.0,4.0),
(-1.0,3.0),
(1.0,3.0),
(-3.0,3.0),
(3.0,3.0),
(-2.0,2.0),
(2.0,2.0),
(-2.0,-2.0),
(2.0,-2.0),
(-4.0,1.0),
(4.0,1.0),
(-1.0,-3.0),
(1.0,-3.0)]
def make_data_pipeline(file_names,labels,image_size,frame_duration,overlap):
'''
IN:
file_names - list of strings for each input file (one for each subject)
labels - list of labels for each
image_size - int size of output images in form (x, x)
frame_duration - time length of each frame (seconds)
overlap - float fraction of frame to overlap in range (0,1)
OUT:
X: np array of frames (unshuffled)
y: np array of label for each frame (1 or 0)
'''
Fs = 128.0 #sampling rate
frame_length = Fs * frame_duration
print('Generating training data...')
for i, file in enumerate(file_names):
print ('Processing session: ',file, '. (',i+1,' of ',len(file_names),')')
data = genfromtxt(file, delimiter=',').T
df = pd.DataFrame(data)
X_0 = make_frames(df,frame_duration)
#steps = np.arange(0,len(df),frame_length)
X_1 = X_0.reshape(len(X_0),14*3)
images = gen_images(np.array(locs_2d),X_1, image_size, normalize=False)
images = np.swapaxes(images, 1, 3)
print(len(images), ' frames generated with label ', labels[i], '.')
print('\n')
if i == 0:
X = images
y = np.ones(len(images))*labels[0]
else:
X = np.concatenate((X,images),axis = 0)
y = np.concatenate((y,np.ones(len(images))*labels[i]),axis = 0)
return X,np.array(y)
file_names = ['data/ML101_KS.csv',
'data/ML101_US.csv',
'data/ML102_KS.csv',
'data/ML102_US.csv',
'data/ML103_KS.csv',
'data/ML103_US.csv',
'data/ML104_KS.csv',
'data/ML104_US.csv',
'data/ML105_KS.csv',
'data/ML105_US.csv',
'data/ML106_KS.csv',
'data/ML106_US.csv',
'data/ML107_KS.csv',
'data/ML107_US.csv',
'data/ML108_KS.csv',
'data/ML108_US.csv']
labels = [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
image_size = 28
frame_duration = 1.0
overlap = 0.5
X, y = make_data_pipeline(file_names,labels,image_size,frame_duration,overlap)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20,shuffle=True)
# input image dimensions
img_rows, img_cols = 28, 28
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
input_shape = (img_rows, img_cols, 3)
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
batch_size = 128
num_classes = 2
epochs = 500
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(10))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
#x_train /= 255
#x_test /= 255
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)