-
Notifications
You must be signed in to change notification settings - Fork 131
/
RBC_Python_Numba.py
135 lines (98 loc) · 4.93 KB
/
RBC_Python_Numba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Basic RBC model with full depreciation (Alternate 1)
#
# Jesus Fernandez-Villaverde
# Haverford, July 3, 2013
import numpy as np
import math
import time
from numba import autojit
# - Start Inner Loop - #
# - bbeta float
# - nGridCapital: int64
# - gridCapitalNextPeriod: int64
# - mOutput: float (17820 x 5)
# - nProductivity: int64
# - vGridCapital: float (17820, )
# - mValueFunction: float (17820 x 5)
# - mPolicyFunction: float (17820 x 5)
@autojit
def innerloop(bbeta, nGridCapital, gridCapitalNextPeriod, mOutput, nProductivity, vGridCapital, expectedValueFunction, mValueFunction, mValueFunctionNew, mPolicyFunction):
for nCapital in xrange(nGridCapital):
valueHighSoFar = -100000.0
capitalChoice = vGridCapital[0]
for nCapitalNextPeriod in xrange(gridCapitalNextPeriod, nGridCapital):
consumption = mOutput[nCapital,nProductivity] - vGridCapital[nCapitalNextPeriod]
valueProvisional = (1-bbeta)*np.log(consumption)+bbeta*expectedValueFunction[nCapitalNextPeriod,nProductivity];
if valueProvisional > valueHighSoFar:
valueHighSoFar = valueProvisional
capitalChoice = vGridCapital[nCapitalNextPeriod]
gridCapitalNextPeriod = nCapitalNextPeriod
else:
break
mValueFunctionNew[nCapital,nProductivity] = valueHighSoFar
mPolicyFunction[nCapital,nProductivity] = capitalChoice
return mValueFunctionNew, mPolicyFunction
def main_func():
# 1. Calibration
aalpha = 1.0/3.0 # Elasticity of output w.r.t. capital
bbeta = 0.95 # Discount factor
# Productivity values
vProductivity = np.array([0.9792, 0.9896, 1.0000, 1.0106, 1.0212],float)
# Transition matrix
mTransition = np.array([[0.9727, 0.0273, 0.0000, 0.0000, 0.0000],
[0.0041, 0.9806, 0.0153, 0.0000, 0.0000],
[0.0000, 0.0082, 0.9837, 0.0082, 0.0000],
[0.0000, 0.0000, 0.0153, 0.9806, 0.0041],
[0.0000, 0.0000, 0.0000, 0.0273, 0.9727]],float)
## 2. Steady State
capitalSteadyState = (aalpha*bbeta)**(1/(1-aalpha))
outputSteadyState = capitalSteadyState**aalpha
consumptionSteadyState = outputSteadyState-capitalSteadyState
print "Output = ", outputSteadyState, " Capital = ", capitalSteadyState, " Consumption = ", consumptionSteadyState
# We generate the grid of capital
vGridCapital = np.arange(0.5*capitalSteadyState,1.5*capitalSteadyState,0.00001)
nGridCapital = len(vGridCapital)
nGridProductivity = len(vProductivity)
## 3. Required matrices and vectors
mOutput = np.zeros((nGridCapital,nGridProductivity),dtype=float)
mValueFunction = np.zeros((nGridCapital,nGridProductivity),dtype=float)
mValueFunctionNew = np.zeros((nGridCapital,nGridProductivity),dtype=float)
mPolicyFunction = np.zeros((nGridCapital,nGridProductivity),dtype=float)
expectedValueFunction = np.zeros((nGridCapital,nGridProductivity),dtype=float)
# 4. We pre-build output for each point in the grid
for nProductivity in range(nGridProductivity):
mOutput[:,nProductivity] = vProductivity[nProductivity]*(vGridCapital**aalpha)
## 5. Main iteration
maxDifference = 10.0
tolerance = 0.0000001
iteration = 0
log = math.log
zeros = np.zeros
dot = np.dot
while(maxDifference > tolerance):
expectedValueFunction = dot(mValueFunction,mTransition.T)
for nProductivity in xrange(nGridProductivity):
# We start from previous choice (monotonicity of policy function)
gridCapitalNextPeriod = 0
# - Start Inner Loop - #
mValueFunctionNew, mPolicyFunction = innerloop(bbeta, nGridCapital, gridCapitalNextPeriod, mOutput, nProductivity, vGridCapital, expectedValueFunction, mValueFunction, mValueFunctionNew, mPolicyFunction)
# - End Inner Loop - #
maxDifference = (abs(mValueFunctionNew-mValueFunction)).max()
mValueFunction = mValueFunctionNew
mValueFunctionNew = zeros((nGridCapital,nGridProductivity),dtype=float)
iteration += 1
if(iteration%10 == 0 or iteration == 1):
print " Iteration = ", iteration, ", Sup Diff = ", maxDifference
return (maxDifference, iteration, mValueFunction, mPolicyFunction)
if __name__ == '__main__':
# - Start Timer - #
t1=time.time()
# - Call Main Function - #
maxDiff, iterate, mValueF, mPolicyFunction = main_func()
# - End Timer - #
t2 = time.time()
print " Iteration = ", iterate, ", Sup Duff = ", maxDiff
print " "
print " My Check = ", mPolicyFunction[1000-1,3-1]
print " "
print "Elapse time = is ", t2-t1