forked from carpedm20/visual-analogy-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
189 lines (150 loc) · 6.62 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import scipy.io
import scipy.misc
import numpy as np
from time import gmtime, strftime
from numpy.random import choice
class Loader(object):
def __init__(self, dataset, batch_size):
self.dataset = dataset
self.batch_size = batch_size
self.options = ['rotate', 'scale', 'xpos', 'ypos']
if dataset == "shape":
mat_fname = "shapes48.mat"
elif dataset == "sprite":
mat_fname = "shapes48.mat"
else:
raise Exception(" [!] No dataset exists for %s." % dataset)
mat_path = os.path.join("data", mat_fname)
print (" [*] loading %s" % mat_path)
mat = scipy.io.loadmat(mat_path)
if dataset == "shape":
self.data = mat['M']
self.data_shape = self.data.shape
self.data = self.data.reshape(list(self.data.shape[:3]) + [-1])
self.width, self.height, self.channel, self.color, \
self.shape, self.scale, self.angle, self.xpos, self.ypos = self.data_shape
num_id = self.color * self.shape
pair_matrix = np.eye(num_id).flatten()
num_train = 800
num_test = 224
random_idx = choice(range(pair_matrix.size), num_train, replace=False)
pair_matrix[random_idx] = 1
pair_matrix = pair_matrix.reshape([num_id, num_id])
self.train_pairs = np.array(zip(*np.nonzero(pair_matrix)))
self.test_pairs = np.array(zip(*(pair_matrix == 0)))
self.tests = {}
for option in self.options:
test_a, test_b, test_c, test_d = self.next_test(set_option=option)
self.tests[option] = [test_a, test_b, test_c, test_d]
elif dataset == "sprites":
pass
def next(self, set_option=None):
return self.get_set_from_pairs(self.train_pairs, set_option)
def next_test(self, set_option=None):
return self.get_set_from_pairs(self.test_pairs, set_option)
def get_set_from_pairs(self, pairs, set_option):
idxes = choice(range(len(pairs)), self.batch_size)
cur_pairs = pairs[idxes]
cur_pairs_idx1 = cur_pairs[:,0]
cur_pairs_idx2 = cur_pairs[:,1]
default_angle1 = choice(self.angle, self.batch_size)
default_scale1 = choice(self.scale, self.batch_size)
default_xpos1 = choice(self.xpos, self.batch_size)
default_ypos1 = choice(self.ypos, self.batch_size)
default_angle2 = choice(self.angle, self.batch_size)
default_scale2 = choice(self.scale, self.batch_size)
default_xpos2 = choice(self.xpos, self.batch_size)
default_ypos2 = choice(self.ypos, self.batch_size)
angle1 = default_angle1
angle2 = default_angle1
angle3 = default_angle2
angle4 = default_angle2
scale1 = default_scale1
scale2 = default_scale1
scale3 = default_scale2
scale4 = default_scale2
xpos1 = default_xpos1
xpos2 = default_xpos1
xpos3 = default_xpos2
xpos4 = default_xpos2
ypos1 = default_ypos1
ypos2 = default_ypos1
ypos3 = default_ypos2
ypos4 = default_ypos2
if set_option != None:
to_change = set_option
else:
to_change = choice(self.options)
if to_change == "rotate":
offset = choice(range(-2, 3), self.batch_size)
angle1 = choice(self.angle, self.batch_size)
angle2 = angle1 + offset
angle2[angle2 < 0] += self.angle
angle2[angle2 >= self.angle] -= self.angle
angle3 = choice(range(self.angle), self.batch_size)
angle4 = angle3 + offset
angle4[angle4 < 0] += self.angle
angle4[angle4 >= self.angle] -= self.angle
elif to_change == "scale":
offset = choice(range(-1, 2), self.batch_size)
scale1 = choice(self.scale, self.batch_size)
scale2 = scale1 + offset
bound_idx = np.logical_or(scale2 < 0, scale2 >= self.scale)
offset[bound_idx] *= -1
scale2[bound_idx] = scale1[bound_idx] + offset[bound_idx]
scale3 = choice(range(self.scale), self.batch_size)
under_idx = np.logical_and(scale3 == 0, offset == -1)
upper_idx = np.logical_and(scale3 == self.scale - 1, offset == 1)
scale3[under_idx] = choice(range(1, self.scale), np.sum(under_idx))
scale3[upper_idx] = choice(range(0, self.scale - 1), np.sum(upper_idx))
scale4 = scale3 + offset
elif to_change == "xpos":
offset = choice(range(-1, 2), self.batch_size)
xpos1 = choice(self.xpos, self.batch_size)
xpos2 = xpos1 + offset
bound_idx = np.logical_or(xpos2 < 0, xpos2 >= self.xpos)
offset[bound_idx] *= -1
xpos2[bound_idx] = xpos1[bound_idx] + offset[bound_idx]
xpos3 = choice(range(self.xpos), self.batch_size)
under_idx = np.logical_and(xpos3 == 0, offset == -1)
upper_idx = np.logical_and(xpos3 == self.xpos - 1, offset == 1)
xpos3[under_idx] = choice(range(1, self.xpos), np.sum(under_idx))
xpos3[upper_idx] = choice(range(0, self.xpos - 1), np.sum(upper_idx))
xpos4 = xpos3 + offset
elif to_change == "ypos":
offset = choice(range(-1, 2), self.batch_size)
ypos1 = choice(self.ypos, self.batch_size)
ypos2 = ypos1 + offset
bound_idx = np.logical_or(ypos2 < 0, ypos2 >= self.ypos)
offset[bound_idx] *= -1
ypos2[bound_idx] = ypos1[bound_idx] + offset[bound_idx]
ypos3 = choice(range(self.ypos), self.batch_size)
under_idx = np.logical_and(ypos3 == 0, offset == -1)
upper_idx = np.logical_and(ypos3 == self.ypos - 1, offset == 1)
ypos3[under_idx] = choice(range(1, self.ypos), np.sum(under_idx))
ypos3[upper_idx] = choice(range(0, self.ypos - 1), np.sum(upper_idx))
ypos4 = ypos3 + offset
else:
raise Exception(" [!] Wrong option %s" % to_change)
color1, shape1 = np.unravel_index(cur_pairs_idx1, [self.color, self.shape])
color2, shape2 = np.unravel_index(cur_pairs_idx2, [self.color, self.shape])
shape = self.data_shape[3:]
idx1 = np.ravel_multi_index([color1, shape1, scale1, angle1, xpos1, ypos1], shape)
idx2 = np.ravel_multi_index([color1, shape1, scale2, angle2, xpos2, ypos2], shape)
idx3 = np.ravel_multi_index([color2, shape2, scale3, angle3, xpos3, ypos3], shape)
idx4 = np.ravel_multi_index([color2, shape2, scale4, angle4, xpos4, ypos4], shape)
a = np.rollaxis(self.data[:,:,:,idx1], 3)
b = np.rollaxis(self.data[:,:,:,idx2], 3)
c = np.rollaxis(self.data[:,:,:,idx3], 3)
d = np.rollaxis(self.data[:,:,:,idx4], 3)
if False: # only sued for debugging
t = strftime("%Y-%m-%d %H:%M:%S", gmtime())
self._get_image(a, "test/%s_1.png" % t)
self._get_image(b, "test/%s_2.png" % t)
self._get_image(c, "test/%s_3.png" % t)
self._get_image(d, "test/%s_4.png" % t)
return a, b, c, d
def _get_image(self, imgs, fname):
for idx, img in enumerate(imgs):
scipy.misc.imsave(fname.replace(".", "_%s." % idx).replace(" ", "_"), img)