-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnet.py
167 lines (129 loc) · 6.25 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import numpy as np
from typing import OrderedDict, Tuple, List
from omegaconf import DictConfig
from torch import Tensor
from torchvision.models import swin_b, Swin_B_Weights
from torchvision.transforms.functional import normalize
from torch.nn.functional import interpolate
from torchvision.models.feature_extraction import create_feature_extractor
from models.vlm import get_vlm
from models.fusion import get_fusion_module
from models.decoder import get_decoder
from models.vlm import get_vlm
from torch import nn
def weights_init_kaiming(m):
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Upsample) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv1d):
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.LayerNorm):
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class Oryon(torch.nn.Module):
def __init__(self, args : DictConfig, device : str):
super().__init__()
self.args = args.model
self.device = device
self.vlm = get_vlm(self.args, self.device)
self.guidance_backbone = self.init_guidance_backbone(self.device)
self.fusion = get_fusion_module(self.args, self.device)
self.decoder = get_decoder(self.args, self.device)
self.init_all()
def get_trainable_parameters(self) -> list:
param_list = []
param_list.extend(self.fusion.parameters())
param_list.extend(self.decoder.parameters())
return param_list
def init_guidance_backbone(self, device):
swin = swin_b(weights=Swin_B_Weights.DEFAULT)
for param in swin.parameters():
param.requires_grad = False
return_nodes = {
'features.1.1.add_1' : 'guidance3', # [128,96,96]
'features.2.reduction' : 'guidance2', # [256,48,48]
'features.4.reduction' : 'guidance1' # [512,24,24]
}
backbone = create_feature_extractor(swin, return_nodes=return_nodes)
backbone.eval()
backbone = backbone.to(device)
return backbone
def get_guidance_embeds(self, img_ : Tensor) -> List[Tensor]:
'''
Return guidance embeddings as in CATSeg, from Swin_b transformer
normalization from https://pytorch.org/vision/main/models/generated/torchvision.models.swin_b.html
'''
img = img_.clone()
img = interpolate(img, size=(384,384), mode='bicubic',align_corners=True)
img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
outs = self.guidance_backbone(img)
guid1 = outs['guidance1'].transpose(2,3).transpose(1,2)
guid2 = outs['guidance2'].transpose(2,3).transpose(1,2)
guid3 = outs['guidance3'].transpose(2,3).transpose(1,2)
return [guid1,guid2,guid3]
def train(self, mode=True):
self.training = mode
self.vlm.train(mode)
self.fusion.train(mode)
self.decoder.train(mode)
return self
def eval(self):
self.train(False)
def get_image_input(self, xs : dict) -> Tuple[dict, dict]:
# create input with RGB channels
input_a = {'rgb': xs['anchor']['rgb'].to(self.device)}
input_q = {'rgb': xs['query']['rgb'].to(self.device)}
return (input_a, input_q)
def init_all(self):
self.fusion.clip_conv.apply(weights_init_kaiming)
if self.args.use_catseg_ckpt:
#print("Loading CATSeg checkpoint")
ckpt = torch.load('pretrained_models/catseg.pth', map_location=self.device)
# set checkpoint names
new_state_dict = dict()
# this is necessary because of the refactoring we carried out
old_fusion_key = 'sem_seg_head.predictor.transformer'
new_fusion_key = 'fusion'
old_dec_key = 'fusion.decoder'
new_dec_key = 'decoder.decoder'
# changing prefix of fusion and decoder keys
for k,v in ckpt['model'].items():
if k.startswith(old_fusion_key):
new_k = k.replace(old_fusion_key, new_fusion_key)
if new_k.startswith(old_dec_key):
new_k = new_k.replace(old_dec_key, new_dec_key)
if new_k.startswith('fusion.head'):
new_k = new_k.replace('fusion.head', 'decoder.head')
new_state_dict[new_k] = v
# if using CLIP, we are also loading CATSeg's finetuned CLIP
if self.args.image_encoder.vlm == 'clip':
old_clip_key = 'sem_seg_head.predictor.clip_model'
new_clip_key = 'vlm.clip_model'
for k,v in ckpt['model'].items():
if k.startswith(old_clip_key):
new_k = k.replace(old_clip_key,new_clip_key)
new_state_dict[new_k] = v
inco_keys = self.load_state_dict(new_state_dict,strict=False)
#print(inco_keys)
else:
#print("Training from scratch")
self.fusion.apply(weights_init_kaiming)
self.decoder.apply(weights_init_kaiming)
def forward(self, xs: dict):
# extracting CLIP features
visual_a = self.vlm.encode_image(xs['anchor']['rgb'])
visual_q = self.vlm.encode_image(xs['query']['rgb'])
prompt_emb = self.vlm.encode_prompt(xs['prompt'])
guid_a = self.get_guidance_embeds(xs['anchor']['rgb'])
guid_q = self.get_guidance_embeds(xs['query']['rgb'])
# get encoded feature maps [D,N,N]
prompt_emb = prompt_emb.unsqueeze(1)
feats_a = self.fusion.forward(visual_a, prompt_emb, guid_a)
feats_q = self.fusion.forward(visual_q, prompt_emb, guid_q)
mask_a, featmap_a = self.decoder.forward(feats_a, guid_a)
mask_q, featmap_q = self.decoder.forward(feats_q, guid_q)
assert featmap_a.shape[2:] == self.args.image_encoder.img_size
return {
'featmap_a' : featmap_a,
'featmap_q' : featmap_q,
'mask_a' : mask_a,
'mask_q' : mask_q
}