-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-eq.py
127 lines (108 loc) · 6.17 KB
/
main-eq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
from ItalySetup import ItalySetupProvinces
from covidOCP import COVIDVaccinationEquityOCP as COVIDVaccinationOCP
from covidOCP import COVIDParametersOCP
import pickle
import matplotlib.pyplot as plt
import click
import sys, os
from scenarios_utils import pick_scenario, build_scenario
nx = 9
states_names = ['S', 'E', 'P', 'I', 'A', 'Q', 'H', 'R', 'V']
when = 'future'
n_int_steps = 50
ocp = None
nc = 1
@click.command()
@click.option("-s", "--scenario_id", "scn_ids", default=0, help="Index of scenario to run")
@click.option("-n", "--nnodes", "nnodes", default=10, envvar="OCP_NNODES", help="Spatial model size to run")
@click.option("-t", "--ndays", "ndays", default=30, envvar="OCP_NDAYS", help="Number of days to run")
@click.option("--use_matlab", "use_matlab", envvar="OCP_MATLAB", type=bool, default=False, show_default=True,
help="whether to use matlab for the current run")
@click.option("-a", "--age_struct", "age_struct", type=bool, default=False, show_default=True,
help="Whether to use agestructured OCP")
@click.option("-f", "--file_prefix", "file_prefix", envvar="OCP_PREFIX", type=str, default='test',
show_default=True, help="file prefix to add to identify the current set of runs.")
@click.option("-d", "--output_directory", "outdir", envvar="OCP_OUTDIR", type=str, default='model_output_EQ/',
show_default=True, help="Where to write runs")
@click.option("-o", "--optimize", "optimize", type=bool, default=True, show_default=True, help="Whether to optimize")
def cli(scn_ids, nnodes, ndays, use_matlab, age_struct, file_prefix, outdir, optimize):
if not isinstance(scn_ids, list):
scn_ids = [int(scn_ids)]
return scn_ids, nnodes, ndays, use_matlab, age_struct, file_prefix, outdir, optimize
if __name__ == '__main__':
# standalone_mode: so click doesn't exit, see
# https://stackoverflow.com/questions/60319832/how-to-continue-execution-of-python-script-after-evaluating-a-click-cli-function
scn_ids, nnodes, ndays, use_matlab, age_struct, file_prefix, outdir, optimize = cli(standalone_mode=False)
os.makedirs(outdir, exist_ok=True)
# scn_ids = np.arange(18)
# All arrays here are (nnodes, ndays, (nx))
setup = ItalySetupProvinces(nnodes, ndays, when)
M = setup.nnodes
N = setup.ndays - 1
if use_matlab:
p = COVIDParametersOCP.OCParameters(setup=setup, M=M, when=when)
if True:
with open(f'italy-data/parameters_{nnodes}_{when}.pkl', 'wb') as out:
pickle.dump(p, out, pickle.HIGHEST_PROTOCOL)
else:
with open(f'italy-data/parameters_{nnodes}_{when}.pkl', 'rb') as inp:
p = pickle.load(inp)
for scn_id in scn_ids:
scenario = pick_scenario(setup, scn_id)
prefix = file_prefix + '-' + scenario['name']
print(f"""Running scenario {scn_id}: {scenario['name']}, building setup with
ndays: {ndays}
nnodes: {nnodes}
use_matlab: {use_matlab}
when? {when}
rk_steps: {n_int_steps}
---> Saving results to prefix: {prefix}""")
p.apply_epicourse(setup, scenario['beta_mult'])
control_initial = np.zeros((M, N))
results, state_initial, yell, mob = COVIDVaccinationOCP.integrate(N,
setup=setup,
parameters=p,
controls=control_initial,
save_to=f'{outdir}{prefix}-int-{nnodes}_{ndays}-nc',
method='rk4',
n_rk4_steps=n_int_steps)
if optimize and ocp is None:
ocp = COVIDVaccinationOCP.COVIDVaccinationOCP(N=N, n_int_steps=n_int_steps,
setup=setup, parameters=p,
show_steps=False)
maxvaccrate_regional, delivery_national, stockpile_national_constraint, control_initial = build_scenario(setup, scenario, strategy=np.ones(M))
control_initial = np.zeros((M, N))
stockpile = 0
strategy = yell.sum(axis=1) # scale maxvaccrate over stockpile and allocate
unvac_nd = np.copy(setup.pop_node) * .8
for k in range(N):
stockpile += delivery_national[k]
divider = 1
if k % 7 < 3:
divider = 3.5
today_amt_pp = ((stockpile/divider*setup.pop_node/setup.pop_node.sum())/setup.pop_node).min()
print(k, today_amt_pp, stockpile)
today_amt_pp = min(today_amt_pp,
(unvac_nd/setup.pop_node).min(),
(maxvaccrate_regional[:,k]/setup.pop_node).min()) * .95
for nd in range(M):
to_allocate = today_amt_pp*setup.pop_node[nd] #, unvac_nd[nd]) min(
control_initial[nd, k] = to_allocate
stockpile -= to_allocate
unvac_nd[nd] -= to_allocate
results, state_initial, yell, mob = COVIDVaccinationOCP.integrate(N,
setup=setup,
parameters=p,
controls=control_initial,
save_to=f'{outdir}{prefix}-int-{nnodes}_{ndays}',
n_rk4_steps=n_int_steps)
if optimize:
ocp.update(parameters=p,
stockpile_national_constraint=stockpile_national_constraint,
maxvaccrate_regional=maxvaccrate_regional,
states_initial=state_initial,
control_initial=control_initial,
mob_initial=mob,
scenario_name=f'{outdir}{prefix}-opt-{nnodes}_{ndays}')
ocp.solveOCP()