-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_alternative_scenarios_sensitivity_analysis.py
424 lines (350 loc) · 20.6 KB
/
generate_alternative_scenarios_sensitivity_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import copy
import numpy as np
from ItalySetup import ItalySetupProvinces
from covidOCP import COVIDVaccinationOCP as COVIDVaccinationOCP
from covidOCP import COVIDAgeStructuredOCP as COVIDAgeStructuredOCP
from covidOCP import COVIDParametersOCP
import pickle
import matplotlib.pyplot as plt
import click
import time
import sys, os
from scenarios_utils import pick_scenario, build_scenario
import pandas as pd
import multiprocessing as mp
import tqdm
from collections import ChainMap
# Replace the jupyter notebook that was based on matlab called generate_all_scn.
nx = 9
states_names = ['S', 'E', 'P', 'I', 'A', 'Q', 'H', 'R', 'V']
when = 'future-mobintime'
# to load the optimal strategy
input_directory = 'helvetios-runs/2021-11-17-107_90'
input_prefix = f'week'
# to output the now files
output_directory = 'model_output/2021-11-23-sensitivity'
output_prefix = f'altstratint'
nnodes = 107 # nodes
ndays_ocp = 90
ndays = 90
import sys
scenario_to_do = sys.argv[len(sys.argv) -1]
print(f"doing scenario {scenario_to_do}")
#setup_ocp = ItalySetupProvinces(nnodes, ndays_ocp, when)
os.makedirs(f'{output_directory}', exist_ok=True)
def greedy_worker_per_province(nd, scenario, alloc_arr, remains_to_allocate_this_week, maxvaccrate_regional, unvaccinated, k):
with open(f'italy-data/full_posterior/parameters_{nnodes}_{when}_102.pkl', 'rb') as inp:
p = pickle.load(inp)
with open(f'italy-data/full_posterior/setup_{nnodes}_{when}.pkl', 'rb') as inp:
setup = pickle.load(inp)
p.apply_epicourse(setup, scenario['beta_mult'])
to_allocate = maxvaccrate_regional[nd] * 7
to_allocate = min(to_allocate, unvaccinated[nd], remains_to_allocate_this_week)
test_allocation = np.copy(alloc_arr)
test_allocation[nd, k:k + 7] = to_allocate / 7
results, _, yell = COVIDVaccinationOCP.accurate_integrate(setup.ndays - 1,
setup=setup,
parameters=p,
controls=test_allocation,
save_to=None,
only_yell=True,
alloc_strat=None)
yell_tot = results[results['comp'] == 'yell'].pivot(values='value', columns='place',
index='date').sum().sum()
return yell_tot
class AlternativeStrategy:
def __init__(self, setup, scenario, decision_variable, alloc_function=None, dv_per_pop=False, require_projection=False, alloc_arr=None):
self.maxvaccrate_regional, self.delivery_national, self.stockpile_national_constraint, _ = build_scenario(setup, scenario)
self.M = setup.nnodes
self.pop_node = setup.pop_node
self.ind2name = setup.ind2name # so we get rid of setup when pickled
self.ndays = setup.ndays
self.maxvaccrate_regional = self.maxvaccrate_regional[:,0] # stays the same over the course, so take the first one
# updated states variables
self.unvaccinated = np.copy(setup.pop_node)
self.stockpile = 0
self.decision_variable = decision_variable
self.require_projection = require_projection
# The decision variable is per habitant
self.name = decision_variable.capitalize()
if self.decision_variable == 'novacc':
self.name = 'Baseline'
self.shortname = decision_variable[:3]
self.dv_per_pop = dv_per_pop
self.divider = np.ones(self.M)
if dv_per_pop:
self.divider = self.pop_node
self.shortname += '_pp'
self.name += ' per hab.'
if alloc_function == 'focused':
self.alloc_function = self.focused_alloc
self.name += ' (focused)'
self.shortname += '_f'
elif alloc_function == 'proportional':
self.alloc_function = self.proportional_alloc
self.name += ' (proportional)'
self.shortname += '_p'
self.compute_new_strat = True
if alloc_arr is not None:
self.alloc_arr = alloc_arr
self.compute_new_strat = False
elif decision_variable == 'Greedy':
self.alloc_arr = self.computeGreedyStrat(setup, scenario)
self.compute_new_strat = False
else:
self.alloc_arr = np.ones((self.M, self.ndays-1)) * -1 # to be filled
def computeGreedyStrat(self, setup, scenario):
tic = time.time()
alloc_arr = np.zeros((self.M, self.ndays - 1))
print('Computing Greedy')
for k in tqdm.tqdm(np.arange(0, self.ndays - 1, 7)): # every week
remains_to_allocate_this_week = self.delivery_national[0] # delivery national is staircase, 0 there is a delivery.
node2process = copy.deepcopy(setup.ind2name)
while remains_to_allocate_this_week > 10:
# Find node to allocate:
#min_ell_reduction = np.inf
#node2allocate = -1
all_yell = pool.starmap(greedy_worker_per_province,
[(nd,
scenario,
alloc_arr,
remains_to_allocate_this_week,
self.maxvaccrate_regional,
self.unvaccinated,
k) for nd, nname in enumerate(node2process)])
#for nd, nname in enumerate(setup.ind2name):
# to_allocate = self.maxvaccrate_regional[nd]*7
# to_allocate = min(to_allocate, self.unvaccinated[nd],remains_to_allocate_this_week)
# test_allocation = np.copy(alloc_arr)
# test_allocation[nd,k:k+7] = to_allocate/7
# results, _, yell = COVIDVaccinationOCP.accurate_integrate(setup.ndays - 1,
# setup=setup,
# parameters=p,
# controls=test_allocation,
# save_to=None,
# only_yell=True,
# alloc_strat=None)
# yell_tot = results[results['comp'] == 'yell'].pivot(values='value', columns='place',
# index='date').sum().sum()
# if yell_tot < min_ell_reduction:
# min_ell_reduction = yell_tot
# node2allocate = nd
node2allocate = all_yell.index(min(all_yell))
node2allocate = setup.ind2name.index(node2process[node2allocate])
to_allocate = min(self.maxvaccrate_regional[node2allocate]*7, self.unvaccinated[node2allocate],remains_to_allocate_this_week)
alloc_arr[node2allocate,k:k+7] = to_allocate/7
remains_to_allocate_this_week -= to_allocate
self.unvaccinated[node2allocate] -= to_allocate
node2process.remove(setup.ind2name[node2allocate])
print(f'loop done, {len(node2process)} {node2allocate}, {setup.ind2name[node2allocate]}, alloc:{to_allocate}, unvac:{self.unvaccinated[node2allocate]}')
print(f"Max Int computed in {time.time()-tic:.1f}")
return alloc_arr
def focused_alloc(self, decision_df_sorted, nd, nodename):
return self.maxvaccrate_regional[nd]
# this can be vectorized...
def proportional_alloc(self, decision_df_sorted, nd, nodename):
return self.stockpile * decision_df_sorted.loc[nodename]['value'] / decision_df_sorted['value'].sum()
def allocate_now(self, decision_variable_array, today_idx):
# Sort the decision variable dataframe:
self.stockpile += self.delivery_national[today_idx]
#optimize when already allocated
if self.stockpile <= 1:
return np.zeros(self.M)
decision_variable_df = pd.DataFrame(decision_variable_array, index=self.ind2name, columns=['value'])
decision_variable_df.sort_values('value', ascending=False, inplace=True)
alloc_now = np.zeros(self.M)
if 'focused' in self.name:
this_round = self.delivery_national[0]/7
for nodename in decision_variable_df.index:
nd = self.ind2name.index(nodename)
to_allocate = self.maxvaccrate_regional[nd]
to_allocate = min(to_allocate, self.unvaccinated[nd], self.stockpile, self.maxvaccrate_regional[nd], this_round)
alloc_now[nd] = to_allocate
self.stockpile -= to_allocate
self.unvaccinated[nd] -= to_allocate
this_round -= to_allocate
if self.stockpile <= 1 or this_round <= 1:
return alloc_now
elif 'proportional' in self.name:
this_round = self.stockpile
for nodename in decision_variable_df.index:
nd = self.ind2name.index(nodename)
to_allocate = this_round * decision_variable_df.loc[nodename]['value'] / decision_variable_df['value'].sum()
to_allocate = min(to_allocate, self.unvaccinated[nd], self.stockpile, self.maxvaccrate_regional[nd])
alloc_now[nd] = to_allocate
self.stockpile -= to_allocate
self.unvaccinated[nd] -= to_allocate
return alloc_now
def get_today_allocation(self, today_idx, susceptible=None, incidence=None):
if self.compute_new_strat:
self.alloc_arr[:, today_idx] = self.compute_today_allocation(today_idx, susceptible, incidence)
# return from memory
return self.alloc_today_from_memory(today_idx)
def alloc_today_from_memory(self, today_idx):
return self.alloc_arr[:, today_idx]
def compute_today_allocation(self, today_idx, susceptible, incidence):
if 'susceptible' in self.decision_variable:
return self.allocate_now(susceptible/self.divider, today_idx)
elif 'incidence' in self.decision_variable:
return self.allocate_now(incidence/self.divider, today_idx)
elif 'population' in self.decision_variable:
return self.allocate_now(self.pop_node/self.divider, today_idx)
elif 'novacc' in self.decision_variable:
return np.zeros(self.M)
elif 'optimal' in self.decision_variable:
raise ValueError('No you cannot compute today_allocation for optimal, only from memory')
else:
raise ValueError(f'impossible to compute allocation from {self.decision_variable}')
def create_all_alt_strategies(setup, scenario_name, scenario):
alt_strategies = {}
alt_strat = AlternativeStrategy(setup,
scenario,
'Greedy')
alt_strategies[alt_strat.shortname] = alt_strat
# create scenarios
decisions_variables = ['susceptible', 'population', 'incidence']
for decision_variable in decisions_variables:
require_projection = False
if decision_variable == 'incidence':
require_projection = True
for alloc_function in ['focused', 'proportional']:
for dv_per_pop in [True, False]:
alt_strat = AlternativeStrategy(setup,
scenario,
decision_variable,
alloc_function,
dv_per_pop,
require_projection)
alt_strategies[alt_strat.shortname] = alt_strat
# get the optimal strategy
fname = f"{input_directory}/{input_prefix}-{scenario_name}-opt-{nnodes}_{ndays_ocp}.csv"
optimal_df = pd.read_csv(fname, index_col='date', parse_dates=True)
optimal_alloc = optimal_df[optimal_df['comp'] == 'vacc'][['value', 'placeID']].pivot(columns='placeID', values='value').T
optimal_alloc_array = optimal_alloc.sort_index().to_numpy()[:,:-1]
alt_strat = AlternativeStrategy(setup,
scenario,
'optimal',
alloc_arr=optimal_alloc_array)
alt_strategies[alt_strat.shortname] = alt_strat
alt_strat = AlternativeStrategy(setup,
scenario,
'novacc')
alt_strategies[alt_strat.shortname] = alt_strat
print(f'generated {len(alt_strategies.keys())} strategies: {list(alt_strategies.keys())} for scenario {scenario_name}')
return alt_strategies
def worker_create_strategies(post_real, scenario_name, scenario, alt_strategies):
# create object here so not shared:
with open(f'italy-data/full_posterior/setup_{nnodes}_{when}.pkl', 'rb') as inp:
setup = pickle.load(inp)
#setup = ItalySetupProvinces(nnodes, ndays, when)
with open(f'italy-data/full_posterior/parameters_{nnodes}_{when}_{post_real}.pkl', 'rb') as inp:
p = pickle.load(inp)
p.apply_epicourse(setup, scenario['beta_mult'])
alt_strategies_arrs = {}
for shortname, strat in alt_strategies.items():
tic = time.time()
results, state_initial, yell, = COVIDVaccinationOCP.accurate_integrate(setup.ndays - 1,
setup=setup,
parameters=p,
controls=None,
save_to=f'{output_directory}/{input_prefix}-{scenario_name}-{shortname}-{post_real}',
only_yell=False,
alloc_strat=strat)
alt_strategies_arrs[shortname] = {'array':strat.alloc_arr,'name':strat.name}
return {scenario_name: alt_strategies_arrs}
def worker_one_posterior_realization(post_real, scenario_name, scenario, alt_strategies):
tic1 = time.time()
# create object here so not shared:
with open(f'italy-data/full_posterior/setup_{nnodes}_{when}.pkl', 'rb') as inp:
setup = pickle.load(inp)
#setup = ItalySetupProvinces(nnodes, ndays, when)
print(f"{scenario_name}, {post_real}")
with open(f'italy-data/full_posterior/parameters_{nnodes}_{when}_{post_real}.pkl', 'rb') as inp:
p = pickle.load(inp)
p.apply_epicourse(setup, scenario['beta_mult'])
if post_real != 102:
# shuffle it !!
np.random.shuffle(p.betaratiointime_arr)
all_results = pd.DataFrame(columns=['method_short', 'method', 'infected', 'post_sample', 'doses', 'scenario-beta', 'scenario-rate', 'scenario-tot', 'scenario', 'newdoseperweek'])
for shortname, strat in alt_strategies.items():
tic = time.time()
if isinstance(strat, AlternativeStrategy):
results, state_initial, yell, = COVIDVaccinationOCP.accurate_integrate(setup.ndays - 1,
setup=setup,
parameters=p,
controls=None,
save_to=None,#f'{output_directory}/{output_prefix}-{scenario_name}-{shortname}-{post_real}',
only_yell=True,
alloc_strat=strat)
strat_name = strat.name
else:
results, state_initial, yell, = COVIDVaccinationOCP.accurate_integrate(setup.ndays - 1,
setup=setup,
parameters=p,
controls=strat['array'],
save_to=None,#f'{output_directory}/{output_prefix}-{scenario_name}-{shortname}-{post_real}',
only_yell=True,
alloc_strat=None)
strat_name = strat['name']
yell_tot = results[results['comp'] == 'yell'].pivot(values='value', columns='place', index='date').sum().sum()
vacc_tot = results[results['comp'] == 'vacc'].pivot(values='value', columns='place', index='date').sum().sum()
all_results = pd.concat([all_results, pd.DataFrame.from_dict(
{'method_short': [shortname],
'method': [strat_name],
'infected': [yell_tot],
'post_sample': [post_real],
'doses': [vacc_tot],
'scenario-beta': [scenario_name.split('-')[0]],
'scenario-rate': [scenario_name.split('-')[1]],
'scenario-tot': [scenario_name.split('-')[2]],
'scenario': [scenario_name],
'newdoseperweek': [int(scenario_name.split('-')[2][1:])]
})])
print(f"{scenario_name}, {post_real}, {shortname} done in {time.time()-tic:.1f} s. vacc:{vacc_tot:.0f}, yell:{yell_tot:.0f}")
print(f"{scenario_name}, {post_real} done in {time.time()-tic1:.1f} seconds")
return all_results
setup_shared = ItalySetupProvinces(nnodes, ndays, when) #shared between thread, don't use everywhere
# Generate posterior
if False:
for post_real in tqdm.tqdm(np.arange(1, 102+1)):
p = COVIDParametersOCP.OCParameters(setup=setup_shared, M=M, when=when, posterior_draw=post_real)
with open(f'italy-data/full_posterior/parameters_{nnodes}_{when}_{post_real}.pkl', 'wb') as out:
pickle.dump(p, out, pickle.HIGHEST_PROTOCOL)
with open(f'italy-data/full_posterior/setup_{nnodes}_{when}.pkl', 'wb') as out:
pickle.dump(setup_shared, out, pickle.HIGHEST_PROTOCOL)
exit(0)
# Pick the right scenarios
scenarios = {pick_scenario(setup_shared, i)['name']: pick_scenario(setup_shared, i) for i in np.arange(15)}
pick = 'r15-'
scenarios = {k:v for (k,v) in scenarios.items() if pick in k}
print(f'doing {len(scenarios)}: {list(scenarios.keys())}')
scenarios = {k:v for (k,v) in scenarios.items() if f'id{scenario_to_do}' in k}
print(f'selecting {len(scenarios)}: {list(scenarios.keys())}')
pool = mp.Pool(mp.cpu_count()) # https://stackoverflow.com/questions/36533134/cant-get-attribute-abc-on-module-main-from-abc-h-py
# ^ needs to be declared after worker functions
if __name__ == '__main__':
all_results = []
tic = time.time()
alt_strategies = {}
for scenario_name, scenario in scenarios.items():
alt_strategies[scenario_name] = create_all_alt_strategies(setup_shared, scenario_name, scenario)
print("computing all scenarios on realization 102, the median realization, to construct all the alternative strategies")
alt_strategies_all_arrs = pool.starmap(worker_create_strategies, [(102, scenario_name, scenario, alt_strategies[scenario_name]) for scenario_name, scenario in scenarios.items()])
# flatten the list of dics:
alt_strategies_all_arrs = dict(ChainMap(*alt_strategies_all_arrs))
# this does not work for some reason: mainly because these objects are not modified inside the above // thread from some reasaons
#for shortname, strat in alt_strategies[scenario_name].items():
# strat.compute_new_strat = False
for scenario_name, scenario in scenarios.items():
print(f'>>> Doing scenario {scenario_name}')
results_scn = pool.starmap(worker_one_posterior_realization,
[(post_real,
scenario_name,
copy.deepcopy(scenario),
#None, #alt_strategies[scenario_name]
alt_strategies_all_arrs[scenario_name]) for post_real in np.arange(1, 102+1)])
all_results.append(pd.concat(results_scn))
all_results = pd.concat(all_results)
print(all_results)
all_results.to_csv(f'{output_directory}/{output_prefix}-{scenario_name}-ALL.csv', index=False)
print(f"Terminating succesfuly in {(time.time() - tic)/3600:.2f} hours")