-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSprott_discovery.m
117 lines (95 loc) · 3.01 KB
/
Sprott_discovery.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
% ------------------------------------------------------------------
% SINDy method for discovering mappings in Poincaré sections
% ------------------------------------------------------------------
% Application to the Sprott system:
%
% x' = y
% y' = z
% z' = -x - mu*z + y^2
%
% Here mu is a bifurcation parameter and the 2D section is given by y = 0.
%
% This code is associated with the paper "Data-driven stabilization of
% periodic orbits" by Jason J. Bramburger, Steven L. Brunton, and J. Nathan
% Kutz (2020).
% This script is used to obtain the results in Section 4.4.
%--------------------------------------------------------------------------
% Clean workspace
clear all
close all
clc
% Bifurcation parameter
mu = 2.04:0.001:2.08;
%ODE generation parameters
m = 4; %Dimension of ODE
n = m-1; %Dimension of Poincare section
dt = 0.01;
tspan = (0:1000000-1)*dt;
options = odeset('RelTol',1e-12,'AbsTol',1e-12*ones(1,m));
%Generate Trajectories
for k = 1:length(mu)
x0 = [6; 0; -2.5; mu(k)];
[~,xdat(k,:,:)]=ode45(@(t,x) Sprott(x),tspan,x0,options);
end
%% Poincare section data
%Counting parameter
count = 1;
Psec = [];
PsecNext = [];
%Create Poincare section data
for i = 1:length(mu)
temp = [];
for j = 1:length(xdat(i,:,1))-1
if (xdat(i,j,2) >= 0 && xdat(i,j+1,2) <= 0) %&& j >= 0.5*length(xdat(i,:,1)))
temp(count,:) = [xdat(i,j,1) xdat(i,j,3) xdat(i,j,4)]; %nth iterate
count = count + 1;
end
end
Psec = [Psec; temp(1:length(temp)-1,:)];
PsecNext = [PsecNext; temp(2:length(temp),:)];
count = 1;
end
%% Method: SINDy for Poincare Sections
addpath Util
% Create the recurrence data
xt = Psec;
xtnext = PsecNext;
% pool Data (i.e., build library of nonlinear time series)
polyorder = 3; %polynomial order
usesine = 0; %use sine on (1) or off (0)
Theta = poolData(xt,n,polyorder,usesine);
% compute Sparse regression: sequential least squares
lambda = 0.0001; % lambda is our sparsification knob.
% apply iterative least squares/sparse regression
Xi = sparsifyDynamics(Theta,xtnext,lambda,n);
if n == 4
[yout, newout] = poolDataLIST({'x','y','z','w'},Xi,n,polyorder,usesine);
elseif n == 3
[yout, newout] = poolDataLIST({'x','y','z'},Xi,n,polyorder,usesine);
elseif n == 2
[yout, newout] = poolDataLIST({'x','y'},Xi,n,polyorder,usesine);
elseif n == 1
[yout, newout] = poolDataLIST({'x'},Xi,n,polyorder,usesine);
end
fprintf('SINDy model: \n ')
for k = 2:size(newout,2)
SINDy_eq = newout{1,k};
SINDy_eq = [SINDy_eq ' = '];
new = 1;
for j = 2:size(newout, 1)
if newout{j,k} ~= 0
if new == 1
SINDy_eq = [SINDy_eq num2str(newout{j,k}) '*' newout{j,1} ];
new = 0;
else
SINDy_eq = [SINDy_eq ' + ' num2str(newout{j,k}) '*' newout{j,1} ' '];
end
end
end
fprintf(SINDy_eq)
fprintf('\n ')
end
%% Sprott right-hand-side
function dx = Sprott(x)
dx = [x(2); x(3); -x(1) + x(2)^2 - x(4)*x(3); 0];
end