forked from juliandewit/kaggle_ndsb2
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstep2_predict_volumes.py
658 lines (532 loc) · 27.1 KB
/
step2_predict_volumes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
__author__ = 'Julian'
import helpers
import settings
import cv2
import mxnet as mx
import ntpath
import csv
import numpy
import pandas
import shutil
from helpers_fileiter import FileIter
import os.path
import math
MODEL_NAME = settings.MODEL_NAME
CROP_SIZE = settings.CROP_SIZE
INPUT_SIZE = settings.TARGET_CROP - CROP_SIZE
SCALE_SIZE = None
USE_FRUSTUM_VOLUME_CALCULATIONS = True
USE_EMPTY_FIRST_ITEMIN_FRUSTUM = True
MODEL_EPOCH = settings.TRAIN_EPOCHS - 1
PREDICTION_FILENAME = "prediction_raw_" + MODEL_NAME + ".csv"
LOW_CONFIDENCE_PIXEL_THRESHOLD = 200
PIXEL_THRESHOLD = -1
INTERPOLATE_SERIES = False
SMOOTHEN_FRAMES = True
PROCESS_IMAGES = True
SEGMENT_IMAGES = True or PROCESS_IMAGES
COUNT_PIXELS = True or SEGMENT_IMAGES
COMPUTE_VOLUMES = True
current_debug_line = []
global_dia_errors = []
global_sys_errors = []
def prepare_patient_images(patient_id, intermediate_crop=0):
file_lst = []
prefix = str(patient_id).rjust(4, '0')
src_files = helpers.get_files(settings.BASE_PREPROCESSEDIMAGES_DIR, prefix + "*.png")
patient_dir = helpers.get_pred_patient_dir(patient_id)
helpers.create_dir_if_not_exists(patient_dir)
patient_img_dir = helpers.get_pred_patient_img_dir(patient_id)
helpers.create_dir_if_not_exists(patient_img_dir)
helpers.delete_files(patient_img_dir, "*.png")
dummy = numpy.zeros((settings.TARGET_SIZE, settings.TARGET_SIZE))
cv2.imwrite(patient_img_dir + "dummy_overlay.png", dummy)
for src_path in src_files:
file_name = ntpath.basename(src_path)
org_img = cv2.imread(src_path, cv2.IMREAD_GRAYSCALE)
cropped_img = helpers.prepare_cropped_sax_image(org_img, clahe=True, intermediate_crop=intermediate_crop, rotate=0)
if SCALE_SIZE is not None:
cropped_img = cv2.resize(cropped_img, (SCALE_SIZE, SCALE_SIZE), interpolation=cv2.INTER_AREA)
cv2.imwrite(patient_img_dir + file_name, cropped_img)
file_lst.append([file_name, "dummy_overlay.png"])
with open(patient_img_dir + "pred.lst", "wb") as f:
writer = csv.writer(f, delimiter='\t')
writer.writerows(file_lst)
def predict_overlays_patient(patient_id, pred_model_name, pred_model_iter, save_transparents=False, threshold_value=-1):
src_image_dir = helpers.get_pred_patient_img_dir(patient_id)
overlay_dir = helpers.get_pred_patient_overlay_dir(patient_id)
helpers.delete_files(overlay_dir, "*.png")
transparent_overlay_dir = helpers.get_pred_patient_transparent_overlay_dir(patient_id)
helpers.delete_files(transparent_overlay_dir, "*.png")
num_lines = sum(1 for l in open(src_image_dir + "pred.lst"))
batch_size = 1
for try_size in [2, 3, 4, 5]:
if num_lines % try_size == 0:
batch_size = try_size
pred_model = mx.model.FeedForward.load(pred_model_name, pred_model_iter, ctx=mx.gpu(), numpy_batch_size=batch_size)
if not settings.QUICK_MODE:
# 5 crops
predictions_list = []
predictions = []
for crop_indents in [[1, 1], [1, CROP_SIZE - 1], [CROP_SIZE - 1, 1], [CROP_SIZE - 1, CROP_SIZE - 1], [CROP_SIZE / 2, CROP_SIZE / 2]]:
# for crop_indents in [[CROP_SIZE / 2, CROP_SIZE / 2], [CROP_SIZE / 2, 1], [CROP_SIZE / 2, CROP_SIZE - 1]]:
pred_iter = FileIter(root_dir=src_image_dir, flist_name="pred.lst", batch_size=batch_size, augment=False, mean_image=None, crop_size=INPUT_SIZE, crop_indent_x=crop_indents[0], crop_indent_y=crop_indents[1])
tmp_predictions = pred_model.predict(pred_iter)
predictions_list.append(tmp_predictions)
averaged_overlays = []
for image_index in range(0, predictions_list[0].shape[0]):
min_pixels = 99999999.
min_index = - 1
max_pixels = -99999999.
max_index = - 1
for crop_index in range(0, len(predictions_list)):
pred_overlay = predictions_list[crop_index][image_index]
pixel_sum = pred_overlay.sum()
if pixel_sum < min_pixels:
min_pixels = pixel_sum
min_index = crop_index
if pixel_sum > max_pixels:
max_pixels = pixel_sum
max_index = crop_index
sum_overlay = None
sum_item_count = 0
min_index = -1
for crop_index in range(0, len(predictions_list)):
if crop_index != max_index:
continue
pred_overlay = predictions_list[crop_index][image_index]
if sum_overlay is None:
sum_overlay = pred_overlay
sum_item_count += 1
else:
sum_overlay += pred_overlay
sum_item_count += 1
sum_overlay /= sum_item_count
averaged_overlays.append(sum_overlay)
predictions = numpy.vstack(averaged_overlays)
else:
pred_iter = FileIter(root_dir=src_image_dir, flist_name="pred.lst", batch_size=batch_size, augment=False, mean_image=None, crop_size=INPUT_SIZE)
predictions = pred_model.predict(pred_iter)
for i in range(len(predictions)):
y = predictions[i]
y = y.reshape(INPUT_SIZE, INPUT_SIZE)
border_size = CROP_SIZE / 2
y = cv2.copyMakeBorder(y, border_size, border_size, border_size, border_size, cv2.BORDER_CONSTANT, value=0)
y *= 255
if threshold_value >= 0:
y[y <= threshold_value] = 0
y[y > threshold_value] = 255
file_name = ntpath.basename(pred_iter.image_files[i])
cv2.imwrite(overlay_dir + file_name, y)
if save_transparents:
channels = cv2.split(y)
# make argb
empty = numpy.zeros(channels[0].shape, dtype=numpy.float32)
alpha = channels[0].copy()
alpha[alpha == 255] = 75
channels = (channels[0], channels[0], empty, alpha)
transparent_overlay = cv2.merge(channels)
cv2.imwrite(transparent_overlay_dir + file_name, transparent_overlay)
def get_filename(file_path):
# Format of a file is : 0350_00000sax_02_10053_IM-6068-0002.png
file_name = ntpath.basename(file_path)
parts = file_name.split('_')
file_name = parts[4].replace(".png", "")
return file_name
def get_frame_no(file_path):
# Format of a file is : 0350_00000sax_02_10053_IM-6068-0002.png
file_name = ntpath.basename(file_path)
parts = file_name.split('_')
frame_no = parts[2]
return frame_no
def get_location_values(string_value):
string_value = string_value.replace("[", "")
string_value = string_value.replace("]", "")
parts = string_value.split(' ')
res = [float(x) for x in parts if x]
return res
def compute_distance(current_value, previous_value):
if str(previous_value) == "nan":
return previous_value
cur_values = get_location_values(current_value)
prev_values = get_location_values(previous_value)
deltas = []
for c, p in zip(cur_values, prev_values):
deltas.append((c - p) * (c - p))
delta_sum = sum(deltas)
delta_sqrt = math.sqrt(delta_sum)
return delta_sqrt
delta = current_value - previous_value
delta = delta.fillna(0)
updown = pandas.Series(delta.apply(lambda x: 0 if x == 0 else 1 if x > 0 else -1))
return updown
def interpolate_series(pixel_series, series_name):
if not INTERPOLATE_SERIES:
return pixel_series
max_index = 0
max_value = 0
for i in range(len(pixel_series)):
if pixel_series[i] >= max_value:
max_index = i
max_value = pixel_series[i]
max_start = 0
start_index = 0
while start_index < max_index:
if pixel_series[start_index] < max_start:
next_index = start_index
next_value = max_value
while next_index <= max_index:
if pixel_series[next_index] > max_start:
next_value = pixel_series[next_index]
break
next_index += 1
# print series_name + " irregularity start" + str(pixel_series[start_index]) + "\t" + str(max_start) + "\t" + str(next_value)
pixel_series[start_index] = (max_start + next_value) / 2
max_start = max(max_start, pixel_series[start_index])
start_index += 1
max_end = 0
end_index = len(pixel_series) - 1
while end_index > max_index:
if pixel_series[end_index] < max_end:
next_index = end_index
next_value = max_value
while next_index >= max_index:
if pixel_series[next_index] > max_end:
next_value = pixel_series[next_index]
break
next_index -= 1
# print series_name + " irregularity end" + str(pixel_series[end_index]) + "\t" + str(max_end) + "\t" + str(next_value)
pixel_series[end_index] = (max_end + next_value) / 2
max_end = max(max_end, pixel_series[end_index])
end_index -= 1
return pixel_series
def count_pixels(patient_id, threshold, all_slice_data, model_name, threshold_value=-1):
patient_slice_data = all_slice_data[all_slice_data["patient_id"] == patient_id].copy()
patient_slice_data["slice_noloc"] = patient_slice_data["slice_no"].map(str) + "_" + patient_slice_data["slice_location"].map(str)
slices = patient_slice_data["slice_noloc"].unique().tolist()
frames = patient_slice_data["frame_no"].unique().tolist()
frame_count = len(frames)
# find lowest common set of frames that are present in every slice
for name, records in patient_slice_data.groupby("slice_noloc"):
slice_frames = records["frame_no"].unique()
if (len(frames) / 2) >= len(slice_frames):
# throw away small slices (416)
print "Patient " + str(patient_id) + ": throw away slice : " + str(name)
slices.remove(name)
continue
frames = list(set(frames) & set(slice_frames))
new_frame_count = len(frames)
if new_frame_count != frame_count:
print "Patient " + str(patient_id) + ": frames not the same for every slice : " + str(frame_count) + " <> " + str(new_frame_count)
file_name_slices = patient_slice_data.set_index('file_name')['slice_noloc'].to_dict()
file_name_frames = patient_slice_data.set_index('file_name')['frame_no'].to_dict()
# file_name_slice_locations = patient_slice_data.set_index('file_name')['frame_no'].to_dict()
# set up matrix indexed by slice_no and frame_no
slice_index = {}
for slice_no in slices:
slice_index[str(slice_no).rjust(2, '0')] = len(slice_index)
frame_pixel_series = {}
frame_confidence_series = {}
for frame_no in frames:
frame_pixel_series[str(frame_no).rjust(2, '0')] = [-1] * len(slices)
frame_confidence_series[str(frame_no).rjust(2, '0')] = [-1] * len(slices)
overlay_paths = helpers.get_patient_overlays(patient_id)
for overlay_path in overlay_paths:
overlay_img = cv2.imread(overlay_path, cv2.IMREAD_GRAYSCALE)
low_confidence_pixel_count = ((overlay_img < LOW_CONFIDENCE_PIXEL_THRESHOLD) & (overlay_img > 20)).sum()
# low_confidence_pixel_count = overlay_img[overlay_img > 10].mean()
if threshold_value >= 0:
overlay_img[overlay_img <= threshold_value] = 0
overlay_img[overlay_img > threshold_value] = 255
pixel_count = overlay_img.sum() / 255
#if pixel_count < 1:
# low_confidence_pixel_percentage = -1
#pixel_count = len(overlay_img[overlay_img > 0])
file_name = get_filename(overlay_path)
if file_name not in file_name_slices:
continue
slice_no = file_name_slices[file_name]
frame_no = file_name_frames[file_name]
slice_str = str(slice_no).rjust(2, '0')
frame_str = str(frame_no).rjust(2, '0')
if slice_str not in slice_index:
print "Patient " + str(patient_id) + " : slice " + slice_str + " skipped"
patient_slice_data = patient_slice_data[patient_slice_data["slice_noloc"] != slice_no]
continue
if frame_str not in frame_pixel_series:
print "Patient " + str(patient_id) + " : frame " + frame_str + " skipped"
patient_slice_data = patient_slice_data[patient_slice_data["frame_no"] != frame_no]
continue
frames_pixel_serie = frame_pixel_series[frame_str]
frame_confidence_serie = frame_confidence_series[frame_str]
serie_index = slice_index[slice_str]
frames_pixel_serie[serie_index] = pixel_count
frame_confidence_serie[serie_index] = low_confidence_pixel_count
data_frame = pandas.DataFrame()
patient_slice_data_frame1 = patient_slice_data[patient_slice_data["frame_no"] == 1]
data_frame["slice"] = slices
data_frame["slice_thickness"] = patient_slice_data_frame1["slice_thickness"].values
data_frame["slice_location"] = patient_slice_data_frame1["slice_location"].values
data_frame["slice_dist"] = (patient_slice_data_frame1["slice_location"].shift(-1) - patient_slice_data_frame1["slice_location"]).values
data_frame["slice_dist"].fillna(data_frame["slice_dist"].mean(), inplace=True)
data_frame["slice_location2a"] = patient_slice_data_frame1["slice_location2"].values
data_frame["slice_location2b"] = patient_slice_data_frame1["slice_location2"].shift(-1).values
data_frame["slice_dist2"] = data_frame.apply(lambda row: compute_distance(row["slice_location2a"], row["slice_location2b"]), axis=1)
data_frame["slice_dist2"].fillna(data_frame["slice_dist2"].mean(), inplace=True)
deltas = abs(abs(data_frame["slice_dist"]) - abs(data_frame["slice_dist2"])).sum()
if deltas > 1:
print "slice_dist != slice_dist2 (" + str(deltas) + ")"
data_frame["time"] = patient_slice_data_frame1["time"].values
for frame_no in frames:
frame_str = str(frame_no).rjust(2, '0')
interpolated_series = interpolate_series(frame_pixel_series[frame_str], frame_str)
data_frame["fr_" + frame_str] = interpolated_series
if SMOOTHEN_FRAMES:
for frame_no in frames:
prev_frame = frame_no - 1
if prev_frame < 1:
prev_frame = 30
next_frame = frame_no + 1
if next_frame > 30:
next_frame = 1
this_frame_col = "fr_" + str(frame_no).rjust(2, '0')
next_frame_col = "fr_" + str(next_frame).rjust(2, '0')
prev_frame_col = "fr_" + str(prev_frame).rjust(2, '0')
if this_frame_col in data_frame.columns and next_frame_col in data_frame.columns and prev_frame_col in data_frame.columns:
data_frame[this_frame_col] = (data_frame[this_frame_col] + data_frame[prev_frame_col] + data_frame[next_frame_col]) / 3
for frame_no in frames:
frame_str = str(frame_no).rjust(2, '0')
data_frame["co_" + frame_str] = frame_confidence_series[frame_str]
patient_dir = helpers.get_pred_patient_dir(patient_id)
data_frame.to_csv(patient_dir + "\\areas_" + model_name + ".csv", sep=";")
return data_frame
def copy_diasys_images_and_overlays(patient_id, dia_frame, sys_frame, target_image_dir, target_overlay_dir):
overlay_paths = helpers.get_patient_transparent_overlays(patient_id)
image_paths = helpers.get_patient_images(patient_id)
for overlay_path in overlay_paths:
frame_no = get_frame_no(overlay_path)
if frame_no == dia_frame or frame_no == sys_frame:
file_name = ntpath.basename(overlay_path)
shutil.copyfile(overlay_path, target_overlay_dir + file_name)
for image_path in image_paths:
frame_no = get_frame_no(image_path)
if frame_no == dia_frame or frame_no == sys_frame:
file_name = ntpath.basename(image_path)
shutil.copyfile(image_path, target_image_dir + file_name)
def compute_volumne_frustum(pixel_series, distance_series, low_confidence_calc=False):
val_list = pixel_series.values.tolist()
dist_list = distance_series.fillna(10).values.tolist()
max_val = 0
# val_list.reverse()
# dist_list.reverse()
val_list.append(0)
if abs(dist_list[0]) > 25:
print "First element slice location completely out of range.. removing. " + str(dist_list[0])# patient 643, 579.. need a better, time based fix
dist_list[0] = 0
if USE_EMPTY_FIRST_ITEMIN_FRUSTUM:
dist_list.insert(0, max(dist_list[0], 10))
val_list.insert(0, 0)
total_volume = 0
for i in range(len(val_list) - 1):
val = val_list[i]
dist = abs(float(dist_list[i]))
if val > max_val:
max_val = val
# patient 277 has a dist > 20.. strange..
if dist > 15:
print "Suspicious.. dist > 15. (" + str(dist) + ")"
# dist = 15
next_val = val_list[i + 1]
if (not USE_FRUSTUM_VOLUME_CALCULATIONS) or low_confidence_calc:
# same formula only top area same as bottom area.. (so cylinders instead of frustums)
next_val = val
volume = (dist / 3.)
term2 = (val + math.sqrt(val * next_val) + next_val)
volume *= term2
total_volume += volume
res = total_volume / 1000
return res, max_val
def compute_inconfidence_features(conf_values_serie):
# make a list of the pixel inconfifence percentages 1st slice, 2nd slice, avg(mid slices), 2nd last slice and last slice
res = [-1, -1, -1, -1, -1]
val_list = conf_values_serie.values.tolist()
if len(val_list) < 5:
return res
res[0] = val_list[0]
res[1] = val_list[1]
mid_list = [item for item in val_list[2:-2] if item >= 0]
res[2] = sum(mid_list) / len(mid_list)
res[3] = val_list[-2]
res[4] = val_list[-1]
return res
def compute_volumes(patient_id, model_name, debug_info=False):
patient_dir = helpers.get_pred_patient_dir(patient_id)
min_areas = pandas.read_csv(patient_dir + "\\areas_" + model_name + ".csv", sep=";")
columns = list(min_areas)
# diastole_col = ""
diastole_pixels = 0
systole_pixels = 999999
diastole_max = 0
systole_max = 999999
for column in columns:
if not column.startswith("fr"):
continue
# if False:
# pixel_max = min_areas[column].max()
# if pixel_max > diastole_max:
# diastole_max = min_areas[column].max()
# diastole_col = column
#
# pixel_max = min_areas[column].max()
# if pixel_max < systole_max:
# systole_max = pixel_max
# systole_col = column
# else:
value_list = min_areas[column].values.tolist()
value_list.sort(reverse=True)
pixel_sum = sum(value_list[:200])
#pixel_sum = min_areas[column].sum()
if pixel_sum > diastole_pixels:
diastole_pixels = pixel_sum
diastole_col = column
if pixel_sum < systole_pixels:
systole_pixels = pixel_sum
systole_col = column
if debug_info:
current_debug_line.append(str(diastole_col))
current_debug_line.append(str(systole_col))
# min_areas["diastole_vol"] = min_areas[diastole_col] * min_areas["slice_dist"]
# min_areas["systole_vol"] = min_areas[systole_col] * min_areas["slice_dist"]
dist_col = "slice_dist"
min_areas_selection = min_areas[["slice", "slice_thickness", "slice_location", "time", dist_col]].copy() # , "diastole_vol", "systole_vol"
min_areas_selection["diastole"] = min_areas[diastole_col].values
min_areas_selection["diastole_vol"] = (min_areas_selection["diastole"] * min_areas_selection[dist_col]).values
min_areas_selection["diastole_conf"] = min_areas[diastole_col.replace("fr", "co")].values
min_areas_selection["systole"] = min_areas[systole_col].values
min_areas_selection["systole_vol"] = (min_areas_selection["systole"] * min_areas_selection[dist_col]).values
min_areas_selection["systole_conf"] = min_areas[systole_col.replace("fr", "co")].values
min_areas_selection.to_csv(patient_dir + "\\areas_dia_sys_" + model_name + ".csv", sep=";")
dia_frame = diastole_col.replace("fr_", "")
sys_frame = systole_col.replace("fr_", "")
diastole_vol, dia_max_slice_val = compute_volumne_frustum(min_areas_selection["diastole"], min_areas_selection[dist_col])
systole_vol, sys_max_slice_val = compute_volumne_frustum(min_areas_selection["systole"], min_areas_selection[dist_col])
low_conf_diastole_vol = round(compute_volumne_frustum(min_areas_selection["diastole_conf"], min_areas_selection[dist_col])[0], 2)
low_conf_systole_vol = round(compute_volumne_frustum(min_areas_selection["systole_conf"], min_areas_selection[dist_col])[0], 2)
return diastole_vol, systole_vol, low_conf_diastole_vol, low_conf_systole_vol, dia_frame, sys_frame, dia_max_slice_val, sys_max_slice_val
def evaluate_volume(patient_id, diastole_vol, systole_vol, pred_model_name, scale, lowconf_dia_vol, lowconf_sys_vol, dia_frame, sys_frame, dia_max_slice, sys_max_slice, debug_info=False):
diastole_vol = round(diastole_vol, 1)
systole_vol = round(systole_vol, 1)
pred_data = pandas.read_csv(settings.BASE_DIR + PREDICTION_FILENAME, sep=";")
scale_col = "scale"
if scale_col not in pred_data.columns:
pred_data[scale_col] = 1
if "lowconf_dia" not in pred_data.columns:
pred_data["lowconf_dia"] = 0
pred_data["lowconf_sys"] = 0
if "frame_dia" not in pred_data.columns:
pred_data["frame_dia"] = -1
pred_data["frame_sys"] = -1
if "max_dia_slice" not in pred_data.columns:
pred_data["max_dia_slice"] = 0
pred_data["max_sys_slice"] = 0
# pred_data.set_value('pat', 'x', 10)
if SEGMENT_IMAGES:
pred_data.loc[pred_data["patient_id"] == patient_id, scale_col] = scale
else:
scale = pred_data.loc[pred_data["patient_id"] == patient_id, scale_col]
diastole_vol *= scale
systole_vol *= scale
pred_data.loc[pred_data["patient_id"] == patient_id, "pred_dia"] = diastole_vol
pred_data.loc[pred_data["patient_id"] == patient_id, "pred_sys"] = systole_vol
pred_data.loc[pred_data["patient_id"] == patient_id, "lowconf_dia"] = lowconf_dia_vol
pred_data.loc[pred_data["patient_id"] == patient_id, "lowconf_sys"] = lowconf_sys_vol
pred_data.loc[pred_data["patient_id"] == patient_id, "frame_dia"] = dia_frame
pred_data.loc[pred_data["patient_id"] == patient_id, "frame_sys"] = sys_frame
pred_data.loc[pred_data["patient_id"] == patient_id, "max_dia_slice"] = dia_max_slice
pred_data.loc[pred_data["patient_id"] == patient_id, "max_sys_slice"] = sys_max_slice
pred_data["error_dia"] = pred_data["pred_dia"] - pred_data["Diastole"]
pred_data["abserr_dia"] = abs(pred_data["pred_dia"] - pred_data["Diastole"])
pred_data["error_sys"] = pred_data["pred_sys"] - pred_data["Systole"]
pred_data["abserr_sys"] = abs(pred_data["pred_sys"] - pred_data["Systole"])
err_dia = pred_data.loc[pred_data["patient_id"] == patient_id, "error_dia"].values[0]
err_sys = pred_data.loc[pred_data["patient_id"] == patient_id, "error_sys"].values[0]
if debug_info:
current_debug_line.append(str(err_dia))
current_debug_line.append(str(err_sys))
pred_data.to_csv(settings.BASE_DIR + "prediction_raw_" + MODEL_NAME + ".csv", sep=";", index=False)
return err_dia, err_sys
def predict_patient(patient_id, all_slice_data, pred_model_name, pred_model_iter, debug_info=False):
if not os.path.exists(settings.BASE_DIR + PREDICTION_FILENAME):
shutil.copyfile(settings.BASE_DIR + "train_enriched.csv", settings.BASE_DIR + PREDICTION_FILENAME)
global current_debug_line
current_debug_line = [str(patient_id)]
done = False
intermediate_crop = 0
round_no = 0
while not done:
if PROCESS_IMAGES:
prepare_patient_images(patient_id, intermediate_crop=intermediate_crop)
if SEGMENT_IMAGES:
predict_overlays_patient(patient_id, pred_model_name, pred_model_iter, save_transparents=True, threshold_value=-1) # 95 was best th
if COUNT_PIXELS:
pixel_frame = count_pixels(patient_id, 0, all_slice_data, pred_model_name, threshold_value=PIXEL_THRESHOLD)
if COMPUTE_VOLUMES:
diastole_vol, systole_vol, diastole_lowconf_vol, systole_lowconf_vol, diastole_frame, systole_frame, diastole_max, systole_max = compute_volumes(patient_id, pred_model_name, debug_info=debug_info)
if SCALE_SIZE is not None:
ratio = float(settings.TARGET_CROP) / float(settings.SCALE_SIZE)
ratio *= ratio
diastole_vol *= ratio
systole_vol *= ratio
diastole_lowconf_vol *= ratio
systole_lowconf_vol *= ratio
scale = 1
if intermediate_crop != 0:
scale = float(intermediate_crop) / float(settings.TARGET_CROP)
scale *= scale
diastole_vol *= scale
systole_vol *= scale
if debug_info:
current_debug_line.append(str(round(diastole_vol, 2)))
current_debug_line.append(str(round(systole_vol, 2)))
err_dia, err_sys = evaluate_volume(patient_id, diastole_vol, systole_vol, pred_model_name, scale, diastole_lowconf_vol, systole_lowconf_vol, diastole_frame, systole_frame, diastole_max, systole_max, debug_info=debug_info)
if debug_info:
print "\t".join(map(lambda x: str(x).rjust(10), current_debug_line))
if diastole_vol > 340 and round_no == 0 and SEGMENT_IMAGES:
intermediate_crop = 220
dia_vol_round1 = diastole_vol
sys_vol_round1 = systole_vol
print "Volume > 300, resizing so that everything is a bit smaller"
current_debug_line = [str(patient_id)]
round_no = 1
else:
done = True
global_dia_errors.append(abs(err_dia))
global_sys_errors.append(abs(err_sys))
return None
if __name__ == "__main__":
slice_data = pandas.read_csv(settings.BASE_DIR + "dicom_data_enriched.csv", sep=";")
current_debug_line = ["patient", "dia_col", "sys_col", "dia_vol", "sys_vol", "dia_err", "sys_err"]
print "\t".join(map(lambda x: str(x).rjust(10), current_debug_line))
model_ranges = [
[MODEL_NAME + "fold0", MODEL_EPOCH, 1, 141],
[MODEL_NAME + "fold1", MODEL_EPOCH, 141, 281],
[MODEL_NAME + "fold2", MODEL_EPOCH, 281, 421],
[MODEL_NAME + "fold3", MODEL_EPOCH, 421, 561],
[MODEL_NAME + "fold4", MODEL_EPOCH, 561, 701],
[MODEL_NAME + "fold5", MODEL_EPOCH, 701, 1141]
]
for model_range in model_ranges:
model_name = model_range[0]
if settings.QUICK_MODE:
model_name = MODEL_NAME + "fold5"
model_iter = model_range[1]
range_start = model_range[2]
range_end = model_range[3]
print "Predicting model " + model_name
for i in range(range_start, range_end):
predict_patient(i, slice_data, model_name, model_iter, debug_info=True)
if len(global_dia_errors) % 20 == 0:
current_debug_line = ["avg", "", "", "", "", round(sum(global_dia_errors) / len(global_dia_errors), 2), round(sum(global_sys_errors) / len(global_sys_errors), 2)]
print "\t".join(map(lambda x: str(x).rjust(10), current_debug_line))
global_dia_errors = []
global_sys_errors = []