title | author | output | linkcolor | citecolor | urlcolor | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
analysis of ialeUK conference proceedings |
James Millington |
|
red |
cyan |
blue |
#Load Data
#(After slightly cleaning column titles - in future include code to do that here)
rm(list=ls())
library(tidyverse)
library(ggplot2)
path <- "C:/Users/k1076631/Google Drive/Research/Papers/InProgress/ialeUK_25years/QuantAnalysis/Rproject"
setwd(path)
filename <- "abstract_review_export_2018-06-11.csv"
cpdata <- read_csv(filename)
This document contains analysis by year. Future analysis could examine contribution attributes by:
- author affiliation (e.g. do NGOs conduct studies at particular scales?)
- landscape type (e.g. what species do studies in Urban landscapes focus on?)
- species (e.g. are birds studied more using empirical studies or GIS?)
etc.
#spec(cpdata)
yrdata <- cpdata %>%
select_if(is.numeric) %>%
group_by(`Conference Year`) %>%
summarise_all(sum, na.rm=T)
Quick observations:
- general increase through time to early 2000s then drop but steady through 2010s
authorCounts <- yrdata %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(yrsum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum) #calculate proportion
ggplot(authorCounts, aes(x=`Conference Year`, y=count)) + geom_bar(stat="identity")
Stacked bar plots of contributions (by types and year)
Quick observations:
- Academic contributors generally dominate
- Government contributors have decreased through time
- NGO attendance has replaced declines in Government? (could check sum of Gov + NGO through time)
authorCounts <- yrdata %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(yrsum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum) #calculate proportion
ggplot(authorCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(authorCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(authorCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- Lowland rural generaly dominates (but lesser contribution in later years)
- Spikes in some years for types (corresponding to special themes)
- Urban and Seascape both appear for first time in 1998; urban then constant presence, but seascape more variable until recent years
lspCounts <- yrdata %>%
select(`Conference Year`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(yrsum = rowSums(.[2:8])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(lspCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(lspCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- no clear patterns
- some years contain no Generic Habitat - is this real or a data entry issue?
sppCounts <- yrdata %>%
select(`Conference Year`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(sppCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(sppCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(sppCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- empirical studies have decreased through time
- GIS and qualitative have increased through time
- Quantitative and theoretical quite steady through time (although theoretical does seem to have reduced after initial years)
methodsCounts <- yrdata %>%
select(`Conference Year`, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(yrsum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(methodsCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(methodsCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- no clear trends?
- Global studies only appear from 2014 onwards
extentCounts <- yrdata %>%
select(`Conference Year`, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(yrsum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(extentCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(extentCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(extentCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- most studies have undefined temporal duration
- those that do are dominated by studies over decades and years
Quick observations:
- Ecosystem services appear from 1998 and have grown recently
- climate change interactions have only become common recently (since 2008)
- 'Scale and scaling' and 'connectivity and fragmentation seem to have decreased oin recent years
- LUCC and Spatial Analysis are mainstays throughout
conceptCounts <- yrdata %>%
select(`Conference Year`, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(conceptCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(conceptCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- socio-economic studies have increased through time
- biodiversity has decreased through time
- Landscape management and Biodiversity peak in early 2000s
othCCounts <- yrdata %>%
select(`Conference Year`, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(yrsum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(othCCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(othCCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(othCCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
#spec(cpdata)
affildata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Affiliation, value = count, Academic:Private) %>%
filter(count > 0) %>%
group_by(`Affiliation`) %>%
summarise_all(sum, na.rm=T)
Quick observations:
- Academic contributors dominate, followed by Government (but as shown above, Government contributions have decreased recently, replaced by NGOs)
lspACounts <- affildata %>%
select(`Affiliation`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(Asum = rowSums(.[2:8])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(lspACounts, aes(x=`Affiliation`, y=count)) + geom_bar(stat="identity")
Stacked bar plots of contributions (by types and author affiliation)
Quick observations:
- Business not good at reporting landscape type!
- Private have greatest proportions of Seascape and Other
ggplot(lspACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations:
- Government has greatest proportion of Upland Rural
- Business has greatest Urban proportion and smallest Lowland Rural proportion
- Academic dominates total number of all landscape types (with possible exception of Upland Rural)
lspACounts <- affildata %>%
select(`Affiliation`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(Asum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(lspACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Academic seem to be majority by absolute number for all species
- Business and Private have greatest proportions of Generic Habitat
- NGOs have greatest proportion of Birds (RSPB?)
speciesACounts <- affildata %>%
select(`Affiliation`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Asum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(speciesACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(speciesACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Academic seem to be majority by absolute number for all methods
- Business obviously lower proportion of empirical studies (expensive?), substituted by GIS and qualitative
- Government has smallest proportion of qualitative
- Private has greatest proprtion of theoretical, no RS and relatively little GIS (technical training?)
methodsACounts <- affildata %>%
select(`Affiliation`,Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Asum = rowSums(.[2:7])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(methodsACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Academic seem to be majority by absolute number for all extents
- Business have largest proportion of Global and National studies, with smallest proprtion of Local studies
- Private has larest proportion of Local and Mini studies (cost-related and given no RS and few GIS studies?)
- Academic: decreasing proportion Local -> Regional -> National -> Global
- Government: greater proportion of National than Regional
spatialACounts <- affildata %>%
select(`Affiliation`,Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(Asum = rowSums(.[2:9])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(spatialACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(spatialACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Vast majority of all affiliations did not list temporal extent of the study Academic seem to be majority by absolute number for all methods
- Not much more of interest here...
temporalACounts <- affildata %>%
select(`Affiliation`,Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`) %>%
mutate(Asum = rowSums(.[2:10])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(temporalACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Academic seem to be majority by absolute number for all extents
- Business have greatest proportions of climate change and ecosystem services, less interested in history and legacy
- All other affiliations reasonably similar in terms of proportions
conceptACounts <- affildata %>%
select(`Affiliation`,`PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`) %>%
mutate(Asum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(conceptACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Academic seem to be majority by absolute number for all extents
- Government and NGOs have greater proportion of Management and Conservation than Academic
- Private low on biodiversity but higher on cultural landscapes, landscape assessment and planning
oconceptACounts <- affildata %>%
select(`Affiliation`,`Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`) %>%
mutate(Asum = rowSums(.[2:10])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Affiliation`, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(oconceptACounts, aes(x=`Affiliation`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(oconceptACounts, aes(x=`Affiliation`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
#spec(cpdata)
lspdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = LspType, value = count, `Upland rural`:Other) %>%
filter(count > 0) %>%
group_by(`LspType`) %>%
summarise_all(sum, na.rm=T)
Quick observations:
- Lowland rural dominate, followed by 'undefined' and Upland rural
AlspCounts <- lspdata %>%
select(LspType,Academic, Government,NGO,Business,Private) %>%
mutate(Asum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(AlspCounts, aes(x=LspType, y=count)) + geom_bar(stat="identity")
Quick observations:
- Academic are majority of all landscape types, with possible exception of Upland rural (Government?)
ggplot(AlspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(AlspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Animal types quite evenly distributed across Lowland rural
- Humans are large contributor to seascape studies (possibly by absolute number as well as relative)
- Generic habitat is large contributor across all landscape types
specieslspCounts <- lspdata %>%
select(LspType,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Asum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(specieslspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(specieslspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- 'Undefined landscape' studies are largely theoretical
- Lowland rural largely studies using empirical and quantitative methods
- Seascape studies have largest proportion of qualitative methods
methodslspCounts <- lspdata %>%
select(LspType,Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Asum = rowSums(.[2:7])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(methodslspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodslspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
Quick observations
- Urban landscape studies are dominated by Local scale analysis
- Upland rural have larger proportion of national studies than Lowland rural
spatiallspCounts <- lspdata %>%
select(LspType,Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(Asum = rowSums(.[2:9])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -Asum) %>%
mutate(prop = count / Asum) #calculate proportion
ggplot(spatiallspCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(spatiallspCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")